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Foreword

Frequency scaling of silicon technology came to an end about a decade ago. Before this programmers
came to expect that processors would simply double their speed every two years or so by increas-
ing processor frequency rate. But with the increasing frequency came increasing power density and,
ultimately, heat which proved to be a hard barrier. So while transistor density continues to increase,
implementations now turn to some form of parallel processing to improve computational performance.

And there is a dramatic need for performance in many large applications: 3D imaging for geophysics
and medical analysis, financial risk analysis, air flow simulations in aerodynamics — the list is extensive.
These applications often require large buildings with megawatts for power to support the computers —
High Performance Computing (HPC) is an expensive proposition.

The obvious form of parallel processor is simply a replication of multiple processors starting with a
single silicon die (“multi core”) and extended to racks and racks of interconnected processor+memory
server units. Even when the application can be expressed in a completely parallel form, this approach
has its own limitations especially accessing a common memory. The more processors used to access
common memory data the more likely contention develops to limit the overall speed.

Maxeler Technologies developed an alternative paradigm to parallel computing: Multiscale Dataflow
Computing. Dataflow computing was popularized by a number of researchers in the 1980’s, especially
J. B. Dennis. In the dataflow approach an application is considered as a dataflow graph of the exe-
cutable actions; as soon as the operands for an action are valid, the action is executed and the result is
forwarded to the next action in the graph. There are no load or store instructions as the operational node
contains the relevant data. Creating a generalized interconnection among the action nodes proved to
be a significant limitation to dataflow realizations in the 1980’s. Over recent years the extraordinary
improvement in transistor array density allowed emulations of the application dataflow graph. The Max-
eler dataflow implementations are a generalization of the earlier work employing static, synchronous
dataflow with an emphasis on data streaming. Indeed “multiscale” dataflow incorporates vector and
array processing to offer a multifaceted parallel compute platform.
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At the heart of Multiscale Dataflow Computing is the programming environment, described in this
tutorial. While all this is loosely termed the Maxeler compiler the work is much more than a high level
translator. Embedded in it is the approach to writing optimized dataflow programs. There are at least
three different optimization processes involved. The application actions are written in a dataflow graph
type form, unrolling loops, specifying actions processing a data stream. Next the dataflow from memory
must be described so that it can be properly scheduled into the dataflow engine. Finally, multiple
dataflow engines can be configured together in various ways for maximum application acceleration.
All this is done using familiar programming vernacular such as Java type vocabulary. The essence
of the Maxeler programming approach is high performance with high productivity on the part of the
programmer.

– Michael J. Flynn, Professor Emeritus, Stanford University
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Welcome

Welcome to the Multiscale Dataflow Programming tutorial. To achieve Maximum Performance Com-
puting we strive to combine optimizations on the algorithm level all the way down to the bit level. In
this tutorial we show all the components that are at our disposal to balance computation with data
movement, control and numerics, while addressing functionality and optimizations. We will start by
using predefined dataflow programs before advancing to program Dataflow Engines with new dataflow
programs.

The source code for the examples, exercise stubs and solutions in this tutorial are provided in the
MaxCompiler distribution.
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Document conventions

When important concepts are introduced for the first time, they appear in bold.
Italics are used for emphasis.
Directories and commands are displayed in typewriter font.
Variable and function names are displayed in typewriter font.
Java methods and classes are shown using the following format:

DFEVar io.input(String name, DFEVar addr, DFEType type)

C function prototypes are similar:

max engine t∗ max load(max file t∗ maxfile, const char∗ engine id pattern);

Actual Java usage is shown without italics:

io .output(”output” , myRom, dfeUInt(32));

C usage is similarly without italics:

PassThrough(DATA SIZE, dataIn, dataOut);

Sections of code taken from the source of the examples appear with a border and line numbers:

1 package chap01 gettingstarted.ex1 passthrough;
2 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
3 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
4 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
5
6 public class PassThroughKernel extends Kernel {
7 PassThroughKernel(KernelParameters parameters) {
8 super(parameters);
9

10 // Input
11 DFEVar x = io.input(”x” , dfeUInt(32)) ;
12 // Output
13 io .output(”y” , x, dfeUInt(32)) ;
14 }
15 }

viii Multiscale Dataflow Programming



1
Multiscale Dataflow Computing

The programming language is not simply a tool with which a preconceived task or function can
be accomplished; it is an extensive basis of structure with which the imagination can interact.

– John Chowning

Maxeler’s Multiscale Dataflow Computing is a combination of traditional synchronous dataflow, vec-
tor and array processors. We exploit loop level parallelism in a spatial, pipelined way, where large
streams of data flow through a sea of arithmetic units, connected to match the structure of the compute
task. Small on-chip memories form a distributed register file with as many access ports as needed to
support a smooth flow of data through the chip.

Multiscale Dataflow Computing employs dataflow on multiple levels of abstraction: the system level,
the architecture level, the arithmetic level and the bit level. On the system level, multiple dataflow
engines are connected to form a supercomputer. On the architecture level we decouple memory access
from arithmetic operations, while the arithmetic and bit levels provide opportunities to optimize the
representation of the data and balance computation with communication.

Multiscale Dataflow Programming 1



1.1 Dataflow versus control flow model of computation
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Figure 1: Reuse of functional units over time in a CPU

1.1 Dataflow versus control flow model of computation

In a software application, a program’s source code is transformed into a list of instructions for a par-
ticular processor (’control flow core’), which is then loaded into the memory, as shown in Figure 1.
Instructions move through the processor and occasionally read or write data to and from memory. Mod-
ern processors contain many levels of caching, forwarding and prediction logic to improve the efficiency
of this paradigm, however the programming model is inherently sequential and performance depends
on the latency of memory accesses and the time for a CPU clock cycle.

In a dataflow program, we describe the operations and data choreography for a particular algorithm
(see Figure 2). In a Dataflow Engine (DFE), data streams from memory into the processing chip where
data is forwarded directly from one arithmetic unit (’dataflow core’) to another until the chain of process-
ing is complete. Once a dataflow program has processed its streams of data, the dataflow engine can
be reconfigured for a new application in less than a second.

Each dataflow core computes only a single type of arithmetic operation (for example an addition or
multiplication) and is thus simple so thousands can fit on one dataflow engine. In a DFE processing
pipeline every dataflow core computes simultaneously on neighboring data items in a stream. Unlike
control flow cores where operations are computed at different points in time on the same functional units
(”computing in time”), a dataflow computation is laid out spatially on the chip (”computing in space”).
Dependencies in a dataflow program are resolved statically at compile time.

One analogy for moving from control flow to dataflow is replacing artisans with a manufacturing
model. In a factory each worker gets a simple task and all workers operate in parallel on streams of
cars and parts. Just as in manufacturing, dataflow is a method to scale up a computation to a large
scale.

The dataflow engine structure itself represents the computation thus there is no need for instructions
per se; instructions are replaced by arithmetic units laid out in space and connected for a particular

2 Multiscale Dataflow Programming



1. Multiscale Dataflow Computing
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Figure 2: A dataflow program in action.

data processing task. Because there are no instructions there is no need for instruction decode logic,
instruction caches, branch prediction, or dynamic out-of-order scheduling. By eliminating the dynamic
control flow overhead, the full resources of the chip are dedicated to performing computation. At a
system level, the dataflow engine handles computation of large scale data processing while CPUs
running Linux manage irregular and infrequent operations, IO and inter-node communication.

1.2 Dataflow engines (DFEs)

Figure 3 illustrates the architecture of a Maxeler dataflow processing system which comprises dataflow
engines (DFEs) with their local memories attached by an interconnect to a CPU. Each DFE can im-
plement multiple kernels, which perform computation as data flows between the CPU, DFE and its
associated memories. The DFE has two types of memory: FMem (Fast Memory) which can store sev-
eral megabytes of data on-chip with terabytes/second of access bandwidth and LMem (Large Memory)
which can store many gigabytes of data off-chip.

The bandwidth and flexibility of FMem is a key reason why DFEs are able to achieve such high
performance on complex applications - for example a Vectis DFE can provide up to 10.4TB/s of FMem
bandwidth within in chip. Applications are able to effectively exploit the full FMem capacity because
both memory and computation are laid out in space so data can always be held in memory close to
computation. This is in contrast to traditional CPU architectures with multi-level caches where only the
smallest/fastest cache memory level is close to the computational units and data is duplicated through
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the cache hierarchy.

W Effectively exploiting the DFE’s FMem is often the key to achieving maximum performance.
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Figure 3: Dataflow engine architecture

The dataflow engine is programmed with one or more Kernels and a Manager. Kernels implement
computation while the Manager orchestrates data movement within the DFE. Given Kernels and a
Manager, MaxCompiler generates dataflow implementations which can then be called from the CPU
via the SLiC interface. The SLiC (Simple Live CPU) interface is an automatically generated interface to
the dataflow program, making it easy to call dataflow engines from attached CPUs.

The overall system is managed by MaxelerOS, which sits within Linux and also within the Dataflow
Engine’s manager. MaxelerOS manages data transfer and dynamic optimization at runtime.

1.3 System architecture

In a Maxeler dataflow supercomputing system, multiple dataflow engines are connected together via a
high-bandwidth MaxRing interconnect, as shown in Figure 4. The MaxRing interconnect allows appli-
cations to scale linearly with multiple DFEs in the system while supporting full overlap of communication
and computation.
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2
The Simple Live CPU Interface (SLiC):
Using .max Files

Everything should be made as simple as possible, but no simpler.
– A. Einstein

A Maxeler dataflow supercomputer consists of CPUs and Dataflow Engines (DFEs). The CPUs run
executable files while DFEs run configuration files called .max (dot-max) files.

The .max file is loaded by a CPU program and runs on an available dataflow engine. MaxelerOS
manages the execution at runtime. Calling the Simple Live CPU (SLiC) API functions executes actions
on the DFE, which include sending data streams and sets of parameters to the DFE.

2.1 A first SLiC example

To see how we can use the SLiC interface to interact with DFEs, we take the example of a three-point
moving average .max file (we’ll see the source code for this .max file in the next chapter, section 3).
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Figure 5: Software component interactions

A C implementation of the moving average would look like this:

void MovingAverageCPU(int size, float ∗dataIn, float ∗expected) {
expected[0] = (dataIn[0] + dataIn [1]) / 2;
for ( int i = 1; i < size−1; i++) {

expected[i] = (dataIn[ i−1] + dataIn[i ] + dataIn[ i +1]) / 3;
}
expected[size−1] = (dataIn[size−2] + dataIn[size−1]) / 2;

}

The .max file for our moving average example has the name MovingAverage.max and has a
header file MovingAverage.h. To use the SLiC functions in your C source code, you can either include
the .max file itself or include its accompanying header file with the same name, which is smaller and
easier to read. Figure 5 shows the interaction of the various software components to build a program.

The header file shows the functions that are available for a particular .max file. SLiC supports
multiple levels of interface for interacting with DFEs; the most straightforward SLiC interface is called
Basic Static. The Basic Static level interface for this .max file has a single function:

23 void MovingAverage(
24 int param N, /∗ number of floats in the input stream ∗/
25 const float ∗instream x, /∗ constant input (does not change) ∗/
26 float ∗outstream y); /∗ location of results ∗/

This function loads the .max file onto an available DFE, streams the input array into the DFE and
writes the results into the output array, returning once all the output data is written.

8 Multiscale Dataflow Programming
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2.2 Using multiple engine interfaces within a .max file

An engine interface is a particular way to call a Dataflow Engine. Each engine interface has certain
actions it performs. For example, MovingAverageWeighted.max adds another engine interface to the
weighted average activity. In this second engine interface, you can also set the weights of the weighted
average as follows:

void MovingAverageWeighted weighted(
int param N, /∗ number of floats in the input and output arrays ∗/
const float param weights[3], /∗ three coefficients ∗/
const float ∗instream x, /∗ constant input (does not change) ∗/
float ∗outstream y); /∗ location of results ∗/

The complete include file for the two engine interfaces is MovingAverageWeighted.h.

2.3 Loading and executing .max files

The life-cycle of a .max file within a CPU application is as follows:

load - the .max file is loaded onto a DFE. The DFE is now exclusively owned by the calling CPU
process.

W Loading the .max file takes in the order of 100ms to 1s.

execute actions - the CPU calls SLiC functions to execute actions on the DFE.

W A loaded .max file should be utilized for long enough to justify having waited up to a
second to load the configuration.

unload - the DFE is released by the CPU process and returns to the pool of DFEs managed by Max-
elerOS.

The Basic Static SLiC interface loads the .max file onto the DFE when the first SLiC function is
called, and releases the DFE when the CPU program terminates.

2.4 Using multiple .max files

A CPU application can call multiple DFE functions to use multiple .max files, either running simultane-
ously on multiple DFEs or sequentially on the same DFE. This is done by simply including the header
files for each .max file and calling the appropriate functions for each file.
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Using the Basic Static SLiC interface level, each .max file is run on a different DFE. For example,
imagine that we have our moving average .max file and another .max file called Threshold.max that
thresholds its input stream. Running both DFE configurations requires passing the result of the moving
average to the thresholding DFE:

#include ”MovingAverage.h”
#include ”Threshold.h”
#include <MaxSLiCInterface.h>
...
MovingAverage(size, dataIn, mavOut);
Threshold(size, mavOut, dataOut);

W To run multiple .max files on the same DFE sequentially requires using the Advanced Static
level (see subsection 10.2).

2.5 SLiC Skins

SLiC Skins allow Basic Static SLiC interface function calls to be made natively in languages other
than C. Skins mean that DFE accelerated functions can be quickly integrated into applications/libraries
written in the supported languages.

SLiC Skins are generated from .max files using the sliccompile tool bundled with MaxCompiler.
sliccompile takes as one of it’s arguments the target to generate a Skin for. See Table 1 below for a
list of supported targets.

Language Target Versions supported
Python python 2.4 – 2.6

MATLAB matlab R2012b or higher
R R 2.11 or higher

Table 1: Supported Skin Targets

2.5.1 Matlab

The MATLAB Skin uses MATLAB objects to provide a .max file’s Basic Static SLiC interface’s function-
ality. Listing 1 shows a call to the Moving Average example from MATLAB.

Listing 1: MATLAB code for executing the Moving Average kernel (MovingAverageDemo.m).
1 m = MovingAverage();
2 dataOut = m.default([1, 0, 2, 0, 4, 1, 8, 3]) ;
3 disp(dataOut(2:7));

To create MATLAB bindings for the moving average .max file run the following command:

[user@machine]$ sliccompile -t matlab -m MovingAverage.max
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This creates mex MovingAverage.mexa64, MovingAverage.m and the simutils directory which
together comprise the MovingAverage MATLAB toolbox. When MATLAB is started from a directory
containing these files the MovingAverage class is made available in the environment. Output argu-
ments appear on the left-hand side of method calls.

Run the following command to execute the MATLAB script shown in Listing 2:

[user@machine]$ matlab movingaverage.m

Listing 2: MATLAB code for executing the Moving Average kernel (MovingAverageDemo.m).
1 m = MovingAverage();
2 dataOut = m.default([1, 0, 2, 0, 4, 1, 8, 3]) ;
3 disp(dataOut(2:7));

The MATLAB binding creates access to Basic Static SLiC interface functions through a class named
with the maxfile name. First create an instance of this class.

m = MovingAverage ();

This instance, m, has methods representing basic Static SLiC interface calls that are now available
through MATLAB. These calls keep their original names. Argument names also stay the same but output
arguments do not need to be passed as function arguments. They instead become values returned by
the functions. Some functions may return more than one item. E.g. if a Basic Static SLiC interface
function doSomething takes an argument a and returns arguments b and c they can be accessed as
follows:

[b, c] = m.doSomething(a);

All method documentation is available through MATLAB’s online help system. For help on a function
doSomething belonging to the MovingAverage.max file, run

help (’MovingAverage.doSomething’)

and all input and output arguments are described.
Once the object is finished with it can be removed by running the following.

clear m;

Doing this ensures all DFE connections are closed and that memory is freed.

2.5.2 Python

The Python Skin works like a normal Python module. The example in Listing 3 calculates the moving
average of a Python list. If NumPy is installed then NumPy arrays can be used instead of Python lists.

To create Python bindings for the moving average .max file run the following command:

[user@machine]$ sliccompile -t python -m MovingAverage.max
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Listing 3: Python code for executing the Moving Average kernel (MovingAverageDemo.py).
1 from MovingAverage import MovingAverage
2 dataOut = MovingAverage([1, 0, 2, 0, 4, 1, 8, 3])
3 for i in range(len(dataOut))[1:-1]:
4 print ”dataOut[%d] = %f” % (i, dataOut[i ])

This creates two files, MovingAverage.py and MovingAverage.so, and one directory named
simutils. They encompass the Python module MovingAverage and must be kept together. To add
the module to Python’s search path start Python from the directory containing the module’s files.

The following command executes the Python program in Listing 4:

[user@machine]$ python movingaverage.py

Listing 4: Python code for executing the Moving Average kernel (MovingAverageDemo.py).
1 from MovingAverage import MovingAverage
2 dataOut = MovingAverage([1, 0, 2, 0, 4, 1, 8, 3])
3 for i in range(len(dataOut))[1:-1]:
4 print ”dataOut[%d] = %f” % (i, dataOut[i ])

Once the Python module search path is set appropriately the module can be imported into Python
like any other module with the command:

import MovingAverage

where MovingAverage is the .max file name. When running a simulation Python must be launched with
the generated simutils directory in the current working directory.

Online documentation is available and can be viewed for the module, MovingAverage, by running

help(MovingAverage)

All .max file constants belong to the imported module object and have the same name as defined
in the engine interface. Basic Static SLiC functions are made available as functions that can be called
in the imported module and keep their original defined names. The online documentation lists the
method signatures for each of these functions. The function arguments have the same name but output
arguments appear on the left-hand side of functions as return arguments. Where a function has more
than one output argument the results are returned as a tuple. Streams in Python skin interfaces can be
supplied in the form of nested Python lists or as NumPy arrays.

Nested Python Lists Python lists are suitable for small tests, quick prototypes or demos. They
are easy to use and an attempt is made to do as much run-time checking as possible. They are not
appropriate for high performance code but can be used for simple prototyping.

NumPy Arrays NumPy arrays should be used for high performance code. All NumPy array element
types are typed and types must match the Engine interface requirements exactly. Element types of
function arguments are specified in the online documentation. When using NumPy arrays it is important
to pass arrays of C-style contiguous memory. Arrays not in this format will work but the interface may
be considerably slower. These issues are covered in more detail below.
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2.5.3 R

The R Skin is installed into R as a library and data is provided using R vectors or arrays. The moving
average example called from R is shown in Listing 5.

Listing 5: R code for executing the Moving Average kernel (MovingAverageDemo.R).
1 library( ”MovingAverage”)
2 dataOut <- MovingAverage(c(1, 0, 2, 0, 4, 1, 8, 3))
3 for ( i in 2:7)
4 cat( ’o[ ’ , i , ’ ] =’ , dataOut[i ], ’\n’)

To create R bindings for the moving average .max file run the following command:

[user@machine]$ sliccompile -t R -m MovingAverage.max

This creates MovingAverage 0.1-1 R x86 64-redhat-linux-gnu.tar.gz which is an R pack-
age and a simutils directory. To install it run:

[user@machine]$ R CMD INSTALL -l . MovingAverage_0.1-1_R_x86_64-redhat-linux

-gnu.tar.gz

This directory must then be added to R’s library search path:

[user@machine]$ export R_LIBS="$(pwd):$R_LIBS"

The library can now be imported into R and run from R.

[user@machine]$ R --no-save < movingaverage.R

Listing 6: R code for executing the Moving Average kernel (MovingAverageDemo.R).
1 library( ”MovingAverage”)
2 dataOut <- MovingAverage(c(1, 0, 2, 0, 4, 1, 8, 3))
3 for ( i in 2:7)
4 cat( ’o[ ’ , i , ’ ] =’ , dataOut[i ], ’\n’)

Once in the R environment and assuming the generated library (MovingAverage) has been made
available to R, it can be imported with the following command.

library(MovingAverage)

This imports the MovingAverage namespace into the environment. All basic Static SLiC interface
functions keep their original names and are imported under this namespace. These can either be
called directly or called through the namespace. E.g. the moving average function can be called as
MovingAverage or as MovingAverage::MovingAverage.

Online documentation is available for all R packages though the help command.

help(MovingAverage)
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Function argument names stay the same but output arguments do not need to be passed as function
arguments. They instead become values returned by the functions. When the SLiC function returns
more than one item R gets the items as a list. E.g. if a Basic Static SLiC interface function F takes an
argument a and returns arguments b and c they can be accessed as follows:

ret_list <- MovingAverage::F(a)

result_b <- ret_list$b

result_c <- ret_list$c

W
When testing a simulation .max file it is necessary to start and stop a simulator within R. To
start the simulator call startSimulator and to stop the simulator call stopSimulator. Both
of these functions are exposed as part of the generated R library.

2.5.4 Skin Target Summary

W
In addition to the language bindings sliccompile will also generate a simutils directory.
This directory MUST be copied into the directory the R, MATLAB or Python process is started
from to use simulation .max files.

All three language bindings allow interaction with DFEs by script or through interactive use. They
all come with auto-generated documentation and have simpler interfaces than C taking advantage of
high-level features of these languages. Details of how to build and use the language bindings can be
found in subsection 10.14.

2.5.5 Installer bindings

Bindings can be distributed as installer files. Installer files generate the language bindings for the skins
user. Listing 7 shows a more complex Python example for a non-central χ2 random number generator.
The Python code to interact with the DFE is simple allowing the application writer to concentrate on the
application itself.

To import a generated Python interface use the maxfile name as the module name. All Basic Static
SLiC interface names stay the same. Functions can be imported like any other Python function.

1 from NCChiSquare import NCChiSquare

The call to the generated Python interface for the .max file is the following simple line.

22 dfeRes = NCChiSquare(degree, outputCount, lambdaVal)

All other code in the listing relates to timing, result checking and graph plotting.
To unpack the demo and binding run

[user@machine]$ ./NCChiSquare_installer -t python
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The demo can then be executed by running

[user@machine]$ python NCChiSquareDemo.py

Figure 6 shows a screenshot of the demo application.
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Listing 7: Python code for executing a random number generator from Python.
1 from NCChiSquare import NCChiSquare
2 import time
3 from ncchisquaremisc.ncchisquaremisc import ∗
4 from ncchisquaremisc.NCChiSquareCPP import NCChiSquareCPP
5
6 ## Random Number Generator Parameters ##
7 degree = 160
8 outputCount = 1000000
9 lambdaVal = 1.0

10
11 ## CPU Run ##
12 print ”Running CPU version”
13 ts = time.time()
14 cpuRes = NCChiSquareCPP(degree, outputCount, lambdaVal)
15 te = time.time()
16 cpuTime = te - ts
17 print ’CPU run took: %2.4f sec’ % (cpuTime)
18
19 ## DFE Run ##
20 print ”Running DFE version”
21 ts = time.time()
22 dfeRes = NCChiSquare(degree, outputCount, lambdaVal)
23 te = time.time()
24 dfeTime = te - ts
25 print ’DFE run took: %2.4f sec’ % (dfeTime)
26
27 ## Check Results ##
28 if not checkResults(cpuRes, dfeRes):
29 print ”Error: Results no not match”
30
31 ## Plot graph ##
32 ncchiGraph(
33 ’Non-central chi squared distibution random number generator frequency distributions’,
34 outputCount,
35 ’DFE Implementation (%f seconds)’ % dfeTime,
36 dfeRes,
37 ’CPU Implementation (%f seconds)’ % cpuTime,
38 cpuRes,
39 degree,
40 lambdaVal
41 )
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Figure 6: Non-central χ2 random number Generation demo

Multiscale Dataflow Programming 17



2.6 SLiC Interface levels

2.6 SLiC Interface levels

Overall, SLiC functionality can be accessed on three levels:

Basic Static allows a single function call to run the DFE using static actions defined for the particular
.max file.

Advanced Static allows control of loading of DFEs, setting multiple complex actions, and optimization
of CPU and DFE collaboration.

Advanced Dynamic allows for the full scope of dataflow optimizations and fine-grained control of allo-
cation and de-allocation of all dataflow resources.

The advanced SLiC interfaces are described in section 10.

W Non-blocking functions for all of the SLiC functions to run actions on the DFE are also available
for all levels of the SLiC interface.
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3
Dataflow Programming: Creating .max
Files

I must create a system or be enslaved by another man’s; I will not reason and compare: my
business is to create.

– William Blake

A dataflow application consists mostly of CPU code, with small pieces of the source code, and large
amounts of data, running on dataflow engines. We use a Java library to describe the code that runs on
the dataflow engine.

We create dataflow implementations (.max files) by writing Java code and then executing the Java
code to generate the .max file which can then be linked and called via the SLiC interface. A .max file
generated by MaxCompiler for Maxeler DFEs comprises of two decoupled elements: Kernels and a
Manager. Kernels are graphs of pipelined arithmetic units. Without loops in the dataflow graph, data
simply flows from inputs to outputs. As long as there is a lot more data than there are stages in the
pipeline, the execution of the computation is extremely efficient. With loops in the dataflow graph, data
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Figure 7: MaxCompiler component interactions (blue-gray objects denote MaxCompiler components)

flows in a physical loop inside the DFE, in addition to flowing from inputs to outputs.
The Manager describes the data flow choreography between Kernels, the DFE’s memory and vari-

ous available interconnects depending on the particular dataflow machine. By decoupling computation
and communication, and using a flow model for off-chip I/O to the CPU, DFE interconnects and memory,
Managers allow us to achieve high utilization of available resources such as arithmetic components and
memory bandwidth. Maximum performance in a Maxeler solution is achieved through a combination of
deep-pipelining and exploiting both inter- and intra-Kernel parallelism. The high I/O-bandwidth required
by such parallelism is supported by flexible high-performance memory controllers and a highly parallel
memory system.

MaxCompiler and MaxIDE use an extended version of Java called MaxJ which adds operator over-
loading semantics to the base Java language, enabling an intuitive programming style. MaxJ source
files have the .maxj file extension to differentiate them from pure Java .

Figure 7 shows the development tools provided by MaxCompiler and how they interact to build an
accelerated application.

Figure 8 shows the design flow for implementing a dataflow configuration using MaxCompiler. The
next subsections describe each of these stages in detail.

3.1 Identifying areas of code for dataflow engine implementation

Traditionally, the first step is to analyze the application source code to determine which parts of the
code should be implemented in a dataflow engine. For Multiscale Dataflow Computing, the data is
more important than the source code. Thinking about moving data to the DFE is a much better first
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step. Once we know which data is on the DFE at which point in time, it is obvious which pieces of code
need to run on the DFE as well. Of course in reality this is typically an iterative process.

• The first step in creating a Multiscale Dataflow program is to measure how long it takes to run the
application on CPUs given a set of representative (large) datasets. Limiting the analysis to toy
inputs is a waste of time since CPU memory systems do not scale linearly with problem size and
dataflow technology is targeting large datasets.

• Next, a more detailed analysis provides the distribution of runtime of various parts of the applica-
tion including, if possible, an analysis of time spent in computation and time spent in communi-
cation. Most of the analysis can be achieved with time counters and profiling tools such as gprof,
oprofile, valgrind etc.

W

Acceleration is not limited to the percentage of the application that is being accelerated
because in real-world application development, a lot of programmer effort is spent in
optimizing the core loops while very little effort is spent on optimizing the non-critical
pieces of the application. Once the critical loops are accelerated and moved away from
the CPUs memory system, it is typically possible to accelerate the non-critical code on
the CPU and balance the execution time on the DFE and CPUs to maximize performance
by maximizing utilization of all resources in the Multiscale Dataflow Computer.

• Maximizing regularity of computation: Dataflow engines operate best when performing the same
operation repeatedly on many data items, for example, when computing an inner loop. To maxi-
mize regularity it is imperative to consider all possible loop transformations and estimate perfor-
mance of dataflow implementations for each case.

• Minimizing communication between CPU and dataflow engines: Sending/receiving data between
the CPU and dataflow engines is, relatively speaking, expensive since communication is usu-
ally slower than computation. By carefully selecting the parts of the application to implement
in a dataflow engine, we strive to overlap communication over the CPU-DFE interconnect with
computations on both DFEs and CPUs.

The computation-to-data ratio, which describes how many mathematical operations are performed
per item of data moved, is a key metric for estimating the performance of the final dataflow implemen-
tation. Code that requires large amounts of data to be moved and then performs only a few arithmetic
operations poses higher balancing challenges than code with significant localized arithmetic activity.

3.2 Implementing a Kernel

In this section, we will take a detailed look at a Kernel and the implementation of the arithmetic needed
within an algorithm. The resulting graphs of arithmetic units are the implementation of the data flow
shown in Figure 2 in subsection 1.1. Kernel graphs contain a variety of different node types:
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Computation nodes perform arithmetic and logic operations (e.g., +,*,<,&) as well as
type casts to convert between floating point, fixed point and integer variables.

Value nodes provide parameters which are either constant or set by the CPU application
at run-time.

Stream offsets allowing access to past and future elements of data streams.

Multiplexer (mux) nodes for taking decisions.

Counter nodes for directing control flow over time, for example, keeping track of the position
in a stream for boundary calculations.

I/O nodes connecting data streams between Kernel and Manager.

Let’s consider a simple moving average example such as the one we called in the previous section
via the SLiC interface. The application computes a 3-point moving average over a sequence of N data
values. At the boundaries (the beginning and the end of the data sequence), 2-point averages need to
be applied. The moving average can be expressed as:

yi =


(xi + xi+1)/2 if i = 0
(xi−1 + xi)/2 if i = N−1
(xi−1 + xi + xi+1)/3 otherwise

In a software implementation, an array would be used to hold the data and would be scanned
through with a loop to compute the 3-point average for each index. The array boundaries would be
checked specifically and 2-point averages computed at these positions:

void MovingAverageSimpleCPU(int size, float ∗dataIn, float ∗expected) {
expected[0] = (dataIn[0] + dataIn [1]) / 2;
for ( int i = 1; i < size −1; i++) {

expected[i] = (dataIn[ i −1] + dataIn[ i ] + dataIn[ i + 1]) / 3;
}
expected[size −1] = (dataIn[size −2] + dataIn[size −1]) / 2;

}

The complete Java source for the implementation of this Kernel with its corresponding graph is
shown in Figure 9. The arrows in the diagram show which lines of Java code generated which nodes in
the graph. The data flows from the input through the nodes in the graph to the output.

The first step in creating a dataflow kernel is to declare an input stream of the required type, in this
case a C float type (8-bit exponent and a 24-bit mantissa):

19 DFEVar x = io.input(”x” , dfeFloat(8, 24));

Array accesses turn into accesses into a stream of data. Thus the indices of i, i − 1, and i + 1
become the current, previous and next values in the input stream.

21 DFEVar prev = stream.offset(x, -1);
22 DFEVar next = stream.offset(x, 1);

The average of these three values can now be calculated:

23 DFEVar sum = prev + x + next;
24 DFEVar result = sum / 3;

Multiscale Dataflow Programming 23



3.2 Implementing a Kernel

y/

3

x

1
+1

+ +

Figure 9: Source code for the simple moving average Kernel with the corresponding Kernel graph
diagram.
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Finally the result is written into an output stream:

26 io .output(”y” , result , dfeFloat(8, 24));

To demonstrate the streaming of data over time through the Kernel, Figure 10 shows a stream of
six values passing through the Kernel. Labels have been added to show the value along the edges in
the graph. This is the programmer’s view of the data passing through the Kernel, where the actual
pipelined operation of the Kernel is not considered.

W During one unit of time called a tick, the Kernel executes one step of the computation, con-
sumes one input value and produces one output value.

Figure 11 shows the same six values passing through the Kernel, but this time showing how the
kernel actually runs within the dataflow engine as a pipeline. This diagram makes the simplification that
each node in the graph takes a single clock cycle to produce a result, which may not always be the case,
but demonstrates the principle. The graph is labeled in gray with the filling stages, when it produces
no output, and the flushing stages, when it continues to produce output but consumes no input. The
related data in the graph appears in the same color to show its progress through the pipeline.

This pipelined style of computation is key to the performance of dataflow engines, since all opera-
tions can be computing in parallel on different data items within the stream. MaxCompiler automatically
manages pipelining of the kernel so the programmer does not generally need to consider individual
latencies within the pipeline but instead can program using the abstracted view of Figure 10.

3.3 Estimating performance of a simple dataflow program

One key advantage of dataflow computing is that we can estimate the performance of the dataflow
implementation before actually implementing it, thanks to the static scheduling. For the three-point
moving average filter above, the time to filter 1 million numbers, T , is the time for 1 million numbers to
flow through the three-point filtering dataflow graph.

The first component in estimating performance in dataflow computation is the bandwidth in and out
of the dataflow graph. For data in DFE memory, we simply look up the bandwidth of the particular device
and memory storing the data. The second component is the speed at which the dataflow pipeline is
moving the data forward. A unit of time in a DFE is called a tick, and the speed of movement through a
dataflow pipeline is given in [ticks/second].

T = min(bandwidth, computefrequency)× 1M . Bandwidth can be thought of as the ”numbers
per second“ that can be read into or written out from the DFE chip. The computefrequency is how many
ticks per second the kernels can run at. The frequency is between 100-300 million ticks per second
as determined and displayed during the DFE compilation process, while bandwidth of DFEs can be
between 200-1000 million numbers per second depending on the size of the numbers and the speed of
the interconnect (LMEM, PCIe, Infiniband, or MaxRing).

W
The performance of the three-point filter does not depend on the computations. A 100-point
filter runs as fast as a three point filter, as long as it fits within the resources available on the
DFE. This is the essence of “computing in space” compared to “computing in time”.
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Figure 10: Programmer’s view of the simple moving average Kernel over six ticks showing the input and
output streams.
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Figure 11: Pipelined view of simple moving average Kernel over nine clock cycles.
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3.4 Conditionals in dataflow computing

There are three main methods of controlling conditionals that affect dataflow computation:

1. Global conditionals: These are typically large scale modes of operation depending on input pa-
rameters with a relatively small number of options. If we need to select different computations
based on input parameters, and these conditionals affect the dataflow portion of the design, we
simply create multiple .max files for each case. Some applications may require certain transfor-
mation to get them into the optimal structure for supporting multiple .max files.

if (mode==1) p1(x); else p2(x);

where p1 and p2 are programs that use different .max files.

2. Local Conditionals: Conditionals depending on local state of a computation.

if (a>b) x=x+1; else x=x−1;

These can be transformed into dataflow computation as

x = (a>b) ? (x+1) : (x−1);

3. Conditional Loops: If we do not know how long we need to iterate around a loop, we need to know
a bit about the loop’s behavior and typically values for the number of loop iterations. Once we
know the distribution of values we can expect, a dataflow implementation pipelines the optimal
number of iterations and treats each of the block of iterations as an action for the SLiC interface,
controlled by the CPU (or some other kernel).

W
The ternary-if operator (?:) selects between two input streams. To select between more than
two streams, the control.mux method is easier to use and read than nested ternary-if state-
ments.

Figure 12 shows a more complex three-point average Kernel where the boundary cases are taken
into consideration.

At these boundary cases, we need to calculate the average of only two inputs. However, we cannot
conditionally create a 2-input or 3-input average depending on the current position in the stream at
run-time: we must instantiate any adders and dividers at compile-time to have them implemented in the
logic of the dataflow engine. At run-time, we can choose which inputs to use for our adders and dividers
to get the correct average.

In order to deal with boundaries, Figure 12 shows how the operands are provided by conditional
assignments, which are driven by a conditional expression using the ternary if operator (?:). One of
the operands to the addition comes from a conditional assignment which selects between the previous
stream value and the constant zero. Another operand is provided by the other conditional assignment
which selects between the next stream value and the constant zero:

36 DFEVar prev = aboveLowerBound ? prevOriginal : 0;
37 DFEVar next = belowUpperBound ? nextOriginal : 0;
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The third operand is always the current stream value. A final conditional assignment selects be-
tween a constant divisor 3 and a constant divisor of 2, depending on whether the current location is at
the boundary or not.

The left-hand part of the Kernel graph in Figure 12 shows the control logic to decide if we are
at the boundary or not. We keep track of the stream position via a position counter. The method
control.count.simpleCounter creates a counter and takes two parameters: the bit-width of the
counter and maximum value (in this case, size):

29 DFEVar count = control.count.simpleCounter(32, size);

The output of this counter is a stream of integer values. The counter is initialized to zero when the
first input data value x enters the Kernel and is subsequently incremented for every newly arriving input
data value.

W A counter in a dataflow program is equivalent to a loop variable in CPU code.

We can use standard relational and logical operators such as <, > and & to compute Boolean flags
for the control input of a conditional assignment. In our case above, we compute a flag for the lower
boundary, a flag for the upper boundary (i < N−1) and a flag for being in-between the two boundaries:

31 DFEVar aboveLowerBound = count > 0;
32 DFEVar belowUpperBound = count < size - 1;
33
34 DFEVar withinBounds = aboveLowerBound & belowUpperBound;

Finally, we calculate the average using the standard operators (+ and /):

41 DFEVar sum = prev + x + next;
42 DFEVar result = sum / divisor ;
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Figure 12: Source code for a moving average Kernel that handles boundary cases with the correspond-
ing Kernel graph diagram
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3.5 A Manager to combine Kernels into a DFE

Once we have our Kernels, we need to put them together in a Manager. MaxCompiler includes a
number of parameterizable Managers, some of which are general purpose while others connect Kernels
together in optimal configurations common for specific application domains.

Once the code for Kernels and the configuration of a Manager are combined they form a complete
dataflow program. The execution of this program results in either the generation of a dataflow engine
configuration file (.max file), or the execution of a DFE simulation. In either case, MaxCompiler always
generates an include file to go with a .max file.

3.6 Compiling

There are several stages to compilation in MaxCompiler as a result of being accessed as a Java library:

1. As the Kernel Compiler and the Managers are implemented in Java, the first stage is Java com-
pilation. In this stage the MaxCompiler Java compiler is used to compile user code with normal
Java syntax checking etc. taking place.

2. The next stages of dataflow compilation take place at Java run-time i.e. the compiled Java code
(in .class files) is executed. This process encapsulates the following further compilation steps:

(a) Graph construction: In this stage user code is executed and a graph of computation is
constructed in memory based on the user calls to the Kernel Compiler API.

(b) Kernel Compiler compilation: After all the user code to describe a design has been exe-
cuted the Kernel Compiler takes the generated graph, optimizes it and converts it into either
a low-level format suitable for generating a dataflow engine, or a simulation model.

(c) Back-end compilation: Generating DFE configurations including third-party tools to gen-
erate the configuration files for the chip.

3.7 Simulating DFEs

Kernels and entire DFE programs can be created in a trial-and-error programming model by using
Maxeler DFE simulation. The simulator offers visibility into the execution of a Kernel and compiles in
minutes rather than hours for building DFE configuration. The simulation of a DFE program runs much
more slowly than a real implementation, so that it makes sense to first run small inputs on simulated
DFEs and then run large inputs on actual DFEs.

3.8 Building DFE configurations

Executing a Manager results in the generation of a dataflow engine configuration file with a .max exten-
sion. This file contains both data used to configure the dataflow engine and meta-data used by software
to communicate with this specific dataflow engine configuration. MaxCompiler automates the running
of third-party tools to create this configuration seamlessly. This build process can take many hours for
a complex design, so simulation is recommended for early verification of the design.
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4
Getting Started

All truth passes through three stages: First, it is ridiculed. Second, it is violently opposed.
Third, it is accepted as being self evident.

– Schopenhauer

This section takes you through a step-by-step process to write your own dataflow program in
MaxIDE, the Maxeler development environment, based on the Eclipse open source platform. In the
process we will be creating Kernel designs, configuring Managers, building .max files for simulation
and DFEs, and programming the CPU application software using the SLiC Interface.

4.1 Building the examples and exercises in MaxIDE

To launch MaxIDE, enter the command maxide at a shell command prompt. Figure 13 shows an
excerpt of the welcome page displayed when MaxIDE is launched.

Multiscale Dataflow Programming 33



4.1 Building the examples and exercises in MaxIDE

Figure 13: MaxIDE Welcome Page

4.1.1 Import wizard

To work through the examples and exercises, you can import the project source code into MaxIDE. Click
on Auto-import MaxCompiler tutorial projects on the welcome page. This brings up the import wizard
shown in Figure 14, which shows a list of project file hierarchies.

Each hierarchy listed in the import wizard dialog box corresponds to a particular tutorial document.
The most important tutorials for new users are pre-selected. You can unselect any of these or choose
additional selections using the check boxes. You can also click on the arrow to the left of each selection
to expand it. Expanding a tutorial hierarchy reveals up to three children, namely examples, exercises,
and solutions:

• examples contains complete projects suitable for building just as they appear in the tutorial.

• exercises contains partially written projects for you to finish as suggested in the tutorial.

• solutions are completed versions of the exercises for you to get help or to check your work.

Each of these can be further expanded to a list of projects, which allows you to import individual
projects.

4.1.2 MaxCompiler project perspective

Click on the Finish button to import the source code and all supporting material for your selections.
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Figure 14: Screen shot of the project import wizard

When the import is complete, MaxIDE switches to the MaxCompiler Project perspective, with an
appearance similar to Figure 15.

W You can return to the welcome page at any time by clicking on the Help menu at the top and
selecting the Welcome option from the drop-down menu.

The Project Explorer panel on the left has a heading for each of the projects you imported. Each project
can be expanded to show the three subheadings of CPU Code, Engine Code, and Run Rules.

• Navigating further below the CPU Code or Engine Code headings leads to individual C, C++, or
MaxJ source code files that you can open for editing.

• Navigating below the Run Rules heading leads to a DFE run rule and a Simulation run rule. Right
clicking on either of these brings up a menu to build, run, or set options for the project.
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Figure 15: MaxIDE with an imported project

Debug CPU 
Code

Run ProjectCompile 
Project

Current
Project

Current
Run Rule

Figure 16: MaxIDE buttons for building and running a project

36 Multiscale Dataflow Programming



4. Getting Started

4.1.3 Building and running designs

You can build and run projects using the buttons in the toolbar at the top of MaxIDE, as shown in
Figure 16. You can select a project and run rule combination using the drop down boxes, then click one
of the buttons to build or run it.

The buttons perform the following actions:

1. Build either a simulation or DFE .max file, depending on the selected run rule.

2. This step differs for each of the buttons:

• Compile Project - compiles the CPU source code.

• Debug CPU Code - builds and runs the CPU source code in debug mode, where you can
step through the CPU code.

• Run Project - builds and runs the CPU source code in release mode.

Alternatively, a run rule can be built or run by right-clicking on it in the Project Explorer and selecting
either Build, Debug or Run.

4.1.4 Importing projects

You can import any projects, including the tutorial projects, by:

• Right-clicking in the Project Explorer window and select Import....

• Selecting Import... from the File menu.

Both methods open a dialog where you can select the type of project to import. Select
General→MaxCompiler Projects into Workspace to import a MaxCompiler project, then in the next
screen browse to the directory contain the projects you wish to import. The final screen allows you to
select the projects that you want to import.

If you are using a shared install of MaxCompiler, you might consider checking the Copy projects
into workspace option, otherwise you will be editing the projects in situ. Finally, the Open code files
automatically after import option will close all windows and show the CPU code, Kernel code and
Manager code side by side for the project, which is useful for demonstrating a project.

W Eclipse has extensive documentation and community support at http://www.eclipse.org/,
which may be a helpful supplement to this tutorial.
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4.2 Building the examples and exercises outside of MaxIDE

Although highly recommended, MaxIDE is not required for running the examples or any other imported
projects. The source code for any project imported into MaxIDE is accessible in a directory under
your designated MaxIDE workspace directory (typically $HOME/workspace). Project directory hierar-
chies are organized and named identically to the hierarchy of headings in the Project Explorer panel
(without spaces). Hence, under each project subdirectory, there are sub-directories named CPUCode,
EngineCode, and RunRules.

• The CPUCode directory contains C or C++ source files and header files for the project.

• The EngineCode directory contains a src subdirectory and possibly a bin subdirectory.

– The bin subdirectory stores compiled MaxJ class files, if any.

– The src subdirectory has exactly one subdirectory named after the project. This subdirec-
tory contains MaxJ source code files.

• The RunRules directory contains a subdirectory named DFE and possibly a subdirectory named
Simulation, each containing automatically generated configuration files and Makefiles.

To build a project outside of MaxIDE for a DFE or simulation, navigate to the corresponding
RunRules/DFE or RunRules/Simulation directory of the project hierarchy, and invoke the make utility
using one of the automatically generated Makefiles with an optional target.

• make – with no target builds either a simulation model or a DFE configuration .max file for the
application without running it.

• make startsim – starts a simulator if invoked from the Simulation directory and there is no
simulator already running, but has no effect if invoked in the DFE directory or when a simulator is
already running.

• make run – builds the application if necessary, and then runs it either in a DFE or in simulation,
depending on the directory.

– For DFE runs, DFE hardware is needed.

– For simulation runs, an already running simulator started by make startsim is needed.

• make stopsim – invoked from the DFE directory has no effect. From the Simulation directory,
it either stops a simulator if one is running, or causes an error if not.

• make runsim – is equivalent to make startsim run stopsim
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4.3 A basic kernel

The basic example that we will follow throughout this section is a Kernel that takes a single input stream
x and applies a simple function:

f(x) = x2 + x

The resulting stream is connected directly to the output stream y. Figure 17 shows a graphical
representation of this Kernel in the form of its Kernel graph. The Kernel graph shows the flow of data
from inputs at the top to outputs at the bottom, passing through the nodes that are created by operations
we describe within the Kernel.

y

x

*

+

Figure 17: Graph for a simple Kernel

Listing 8 shows the Java code that implements this Kernel. We will go through this code line by line.
The first five lines specify the package for this example and import Java classes: Kernel,

KernelParameters and DFEVar from the MaxCompiler Java libraries:

8 package simple;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;

It is common to have many package imports in MaxCompiler-based programs as MaxCompiler is im-
plemented as a software library. MaxIDE automatically generates these imports in most circumstances.

The Kernel class provides an entry point into Kernel development. Within the Kernel class are
directly or indirectly a large number of Java methods for creating Kernel designs.

We can create new Kernels by extending the class Kernel:

14 class SimpleKernel extends Kernel {
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Listing 8: Program for the simple Kernel (SimpleKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 4 Example: 2 Name: Simple
4 ∗ MaxFile name: Simple
5 ∗ Summary:
6 ∗ Takes a stream and for each value x calculates xˆ2 + x.
7 ∗/
8 package simple;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
13
14 class SimpleKernel extends Kernel {
15 SimpleKernel(KernelParameters parameters) {
16 super(parameters);
17
18 // Input
19 DFEVar x = io.input(”x” , dfeFloat(8, 24));
20
21 DFEVar result = x∗x + x;
22
23 // Output
24 io .output(”y” , result , dfeFloat(8, 24));
25 }
26 }

We now need to define a constructor for our new SimpleKernel class:

15 SimpleKernel(KernelParameters parameters) {

In Java, a constructor serves as an initialization function executed when an object of a class is
instantiated.

The constructor of a Kernel class needs at least one parameter, an object of class
KernelParameters. In our program, we have chosen the name parameters for this object. Although
our Kernel does not make much use of the parameters object, this object is used internally within the
Kernel class. For this reason, we need to pass the parameter object to the constructor of the Kernel

object. In Java, we do this using the super call:

16 super(parameters);

The code in the body of the program generates the Kernel graph shown in Figure 17.
We use the method io.input to create a named input stream:

19 DFEVar x = io.input(”x” , dfeFloat(8, 24));

io.input takes two parameters. The first is a string representing the name, in this case x, by which
the stream can be referred to when configuring a Manager (see section 13) and running the Kernel from
the C CPU code (see subsection 4.5). The second parameter specifies the data type for the stream. In
our example we define the data type as an IEEE 754 single-precision floating point number.

The actual function is implemented intuitively using standard operators:

21 DFEVar result = x∗x + x;
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We then connect the result directly to the output stream using io.output, which takes the name
of the stream, the internal stream to connect to the output and the type of the stream:

24 io .output(”y” , result , dfeFloat(8, 24));

Input and output streams are referred to as external as they are connected to the rest of the dataflow
engine in a Manager. Depending on the Manager used, these external I/Os can be connected to
memory, another dataflow engine or the CPU.

4.4 Configuring a Manager

After designing the Kernel, we need to configure a Manager to connect our Kernel to the outside world
and build our design for either DFE output or simulation.

Listing 9 presents the Java code for the Manager that builds the DFE for our simple Kernel.

Listing 9: Program for building the simple dataflow example (SimpleManager.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 4 Example: 2 Name: Simple
4 ∗ MaxFile name: Simple
5 ∗ Summary:
6 ∗ Manager for the simple x∗x + x kernel design.
7 ∗ All IO is between the CPU and the DFE.
8 ∗/
9 package simple;

10
11 import com.maxeler.maxcompiler.v2.build.EngineParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.managers.standard.Manager;
14 import com.maxeler.maxcompiler.v2.managers.standard.Manager.IOType;
15
16 class SimpleManager {
17 public static void main(String[] args) {
18 EngineParameters params = new EngineParameters(args);
19 Manager manager = new Manager(params);
20 Kernel kernel = new SimpleKernel(manager.makeKernelParameters());
21 manager.setKernel(kernel);
22 manager.setIO(IOType.ALL CPU);
23 manager.createSLiCinterface();
24 manager.build();
25 }
26 }

We first specify the package and import the class Manager from the Maxeler Standard Managers
library:

9 package simple;
10
11 import com.maxeler.maxcompiler.v2.build.EngineParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.managers.standard.Manager;
14 import com.maxeler.maxcompiler.v2.managers.standard.Manager.IOType;

We then declare a new class SimpleManager that serves as a container for our DFE build program
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and contains a main method to run the build process:

16 class SimpleManager {
17 public static void main(String[] args) {

We now create an object named manager of class Manager which is a Manager that can be used
to connect Kernel streams to communicate directly with the CPU, to an inter-dataflow-engine MaxRing
link or to LMEM directly attached to the dataflow engine:

18 EngineParameters params = new EngineParameters(args);
19 Manager manager = new Manager(params);

Whether the Manager is built for DFE configurations or simulation is determined by the
EngineParameters object passed to the constructor.

MaxIDE passes whether or not the .max file is to be built for simulation or DFEs, as well as other
information, from the run rule via an environment variable that is parsed by MaxCompiler. The Managers
that we use for DFEs and simulation are identical in all other respects for this design.

We create an instance of our Kernel and pass it to the Manager:

20 Kernel kernel = new SimpleKernel(manager.makeKernelParameters());
21 manager.setKernel(kernel);

For our simple example, we want all the inputs and outputs to be connected to the CPU application.
We do this using the setIO method:

22 manager.setIO(IOType.ALL CPU);

A single function call builds the default SLiC interface for the CPU code:

23 manager.createSLiCinterface();

Finally, we call the build() method of the standard Manager class, which runs all the steps re-
quired for building the dataflow engine, such as calling various back-end tools:

24 manager.build();

Listing 10 and Listing 11 show example console output from the build process.

4.4.1 Building the .max file

The results of the build process are the files Simple.max and Simple.h, which are copied to the run
rule directory of the project by MaxIDE.

W You can view the build log for a run rule by right-clicking on the run rule in the project explorer
window and selecting Show Build Log.
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Listing 10: DFE Build Output (part 1)

1 Tue 12:28: ##########################################

2 Tue 12:28: Compiling.

3 Tue 12:28: ##########################################

4
5 Tue 12:28: MaxCompiler version: 2013.1.

6 Tue 12:28: Build DFE Run Rule for tutorial-chap04-example2-simplekernel

start time: Wed Feb 27 12:28:36 GMT 2013.

7 Tue 12:28: Project location: /home/user/tutorial-chap04-example2-

simplekernel.

8 Tue 12:28: Detailed build log: /home/user/workspace/tutorial-chap04-example2

-simplekernel/RunRules/DFE/build.log.

9
10 Tue 12:28: Compiling Engine Code.

11 Tue 12:28: MaxCompiler version: 2013.1

12 Tue 12:28: Build "Simple" start time: Wed 27 12:28:41 GMT 2013

13 Tue 12:28: Main build process running as user user on host host.maxeler.com

14 Tue 12:28: Build location: /home/user/builds/Simple_VECTIS_DFE

15 Tue 12:28: Detailed build log available in "_build.log"

16 Tue 12:28: Instantiating manager

17 Tue 12:28: Instantiating kernel "SimpleKernel"

18 Tue 12:28: Compiling manager (CPU I/O Only)

19 Tue 12:28:

20 Tue 12:28: Compiling kernel "SimpleKernel"

21 Tue 12:29: Generating input files (VHDL, netlists, CoreGen)

22 Tue 12:31: Running back-end build (12 phases)

23 Tue 12:31: (1/12) - Prepare MaxFile Data (GenerateMaxFileDataFile)

24 Tue 12:31: (2/12) - Synthesize DFE Modules (XST)

25 Tue 12:32: (3/12) - Link DFE Modules (NGCBuild)

26 Tue 12:32: (4/12) - Prepare for Resource Analysis (EDIF2MxruBuildPass)

27 Tue 12:33: (5/12) - Generate Preliminary Annotated Source Code (

PreliminaryResourceAnnotationBuildPass)

28 Tue 12:33: (6/12) - Report Resource Usage (XilinxPreliminaryResourceSummary)
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Listing 11: DFE Build Output (part 2)

1 Tue 12:33:

2 Tue 12:33: PRELIMINARY RESOURCE USAGE

3 Tue 12:33: Logic utilization: 9809 / 297600 (3.30%)

4 Tue 12:33: LUTs: 6787 / 297600 (2.28%)

5 Tue 12:33: Primary FFs: 7539 / 297600 (2.53%)

6 Tue 12:33: Multipliers (25x18): 2 / 2016 (0.10%)

7 Tue 12:33: DSP blocks: 2 / 2016 (0.10%)

8 Tue 12:33: Block memory (BRAM18): 21 / 2128 (0.99%)

9 Tue 12:33:

10 Tue 12:33: About to start chip vendor Map/Place/Route toolflow. This will

take some time.

11 Tue 12:33: For this compile, we estimate this process may take up to 30

minutes.

12 Tue 12:33: We recommend running in simulation to verify correctness before

building a DFE configuration.

13 Tue 12:33:

14 Tue 12:33: (7/12) - Prepare for Placement (NGDBuild)

15 Tue 12:33: (8/12) - Place and Route DFE (XilinxMPPR)

16 Tue 12:33: Executing MPPR with 1 cost tables and 1 threads.

17 Tue 12:33: MPPR: Starting 1 cost table

18 Tue 12:40: MPPR: Cost table 1 met timing with score 0 (best score 0)

19 Tue 12:40: (9/12) - Prepare for Resource Analysis (XDLBuild)

20 Tue 12:41: (10/12) - Generate Resource Report (XilinxResourceUsageBuildPass)

21 Tue 12:41: (11/12) - Generate Annotated Source Code (

XilinxResourceAnnotationBuildPass)

22 Tue 12:41: (12/12) - Generate MaxFile (GenerateMaxFileXilinx)

23 Tue 12:43:

24 Tue 12:43: FINAL RESOURCE USAGE

25 Tue 12:43: Logic utilization: 7563 / 297600 (2.54%)

26 Tue 12:43: LUTs: 6332 / 297600 (2.13%)

27 Tue 12:43: Primary FFs: 5845 / 297600 (1.96%)

28 Tue 12:43: Secondary FFs: 1360 / 297600 (0.46%)

29 Tue 12:43: Multipliers (25x18): 2 / 2016 (0.10%)

30 Tue 12:43: DSP blocks: 2 / 2016 (0.10%)

31 Tue 12:43: Block memory (BRAM18): 23 / 2128 (1.08%)

32 Tue 12:43:

33 Tue 12:43: MaxFile: /home/user/builds/Simple_VECTIS_DFE/results/Simple.max (

MD5Sum: 47ecae3e026eaceb661784b29e19c784)

34 Tue 12:43: Build completed: Wed Feb 27 12:43:32 GMT 2013 (took 14 mins, 51

secs)
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4.5 Integrating with the CPU application

The final step in the development of a dataflow implementation is integrating the CPU application with
the SLiC Interface, the C API for communicating with the dataflow engine. Listing 12 show the CPU
application for our simple example.

The header files for SLiC and the .max file created by the build process need to be included in the
source:

9 #include <MaxSLiCInterface.h>
10 #include ”Maxfiles.h”

MaxIDE sets up an auto-generated Maxfiles.h file to include the header files for all the .max

files in your program. If you prefer you can include the header file for each one of your .max files files
manually.

The first part of the main program code is to allocate memory for two arrays of length size, one for
input to the Kernel and one for output. The input data array is set to the values 1-size and the output
data array is initialized to zero:

40 for( int i = 0; i < size; i++) {
41 dataIn[ i ] = i + 1;
42 dataOut[i] = 0;
43 }

This example uses the simplest form of the SLiC Interface to the dataflow engine, which consists
of a single function. The function prototype is automatically generated by MaxCompiler from the Java
source and can be found in the header file simple.h after the .max file has been built:

void Simple(
int32 t param size, // Number of items to process
const float ∗instream x, // Input stream pointer
float ∗outstream y); // Output stream pointer

param size is the size of the input and output stream in items, where each item is a 32-bit float.
instream x is a pointer to the array containing the data to stream into the DFE and outstream y is a
pointer to the array for the data we wish to stream back from the DFE.

W The size of the array to stream to/from the DFE must be a multiple of 16 bytes, otherwise SLiC
produces an error message.

When called, the function streams both the input data array from the CPU memory to the dataflow
engine and the dataflow engine’s output back to the output data array in CPU memory:

46 Simple(size, dataIn, dataOut);
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Once the Kernel has been run we can verify the correctness of the result:

15 for( int i=0; i < size; i++)
16 {
17 if (dataOut[i] != expected[i ]) {
18 fprintf ( stderr , ”Output data @ %d = %1.8g (expected %1.8g)\n”,
19 i , dataOut[i ], expected[i ]) ;
20 status = 1;
21 }
22 }

4.6 Kernel graph outputs

The Kernel Compiler can generate a number of graph files representing the Kernel at various stages
during the compilation process. You can inspect these graphs to analyze the output derived from the
input Java and debug the design.

The graphs are viewed from MaxIDE. After building the kernel you will find the graphs appear under
the RunRule that was build. Typically there are two graphs:

• Original Kernel Graph

This graph, shown in Figure 18, presents the Kernel graph before any optimization or scheduling
has taken place. This graph is the same as the one drawn in Figure 17.
• Final Kernel Graph

This graph, shown in Figure 19, displays the final Kernel after scheduling and optimisation has
taken place and inputs are aligned by buffering.

Figure 18: Kernel Graph Viewer showing the Original graph for the simple Kernel in MaxIDE
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Figure 19: Final graph for the simple Kernel

W To make graphs more readable, nodes created inside functions are grouped together into a
single node. Double click on the node to view the nodes inside.

4.7 Analyzing resource usage

MaxCompiler annotates your Java code with the number of DFE resources used for each line. These
annotated files are output into a folder called src annotated in the build directory of the project, along
with a summary report, during the build process.

W
The build directory is determined by your MAXCOMPILER BUILD DIR environment variable, and
is unrelated to your workspace directory. Check the Build Location: message in the con-
sole output at compile-time for its location.

W Resource annotation is only available for DFE configuration builds.

Listing 13 presents the resource statistics for our simple Kernel. The right-hand side of the listing
displays the Kernel program, and the left-hand side annotates the program with the used resources line
by line. The resources include look-up tables (LUTs), flip-flops (FFs), block RAMs (BRAMs) and DSP
blocks (DSPs).
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In general, LUTs and FFs are used for kernel operations such as arithmetic, DSPs are specifically
used for multiplication operations and BRAMs are used for FMem memory. Some LUTs, FFs and
BRAMs are also used by MaxelerOS in the Manager.

Line 2 lists the total number of resources required by our Kernel design and shows that our simple
Kernel uses 2 DSPs but no block RAMs. Line 3 shows that the design uses only 0.18% of the device’s
look-up tables, 0.12% of its flip-flops and 0.10% of its 22 DSPs. This leaves ample room for increasing
the performance by exploiting more parallelism (for example, by simply replicating the Kernel graph).

By analyzing the resources required for each code line, you can optimize the design for minimal
resource requirements which increases the dataflow configuration’s performance. Furthermore, you
can gain insight into the resource trade-offs of different styles of Kernel programming.

We can see from line 20 that nearly all of the resources used by the simple Kernel are due to the
arithmetic operations. The input statement takes 33 flip-flops, and the output statement takes none
(lines 18 and 23).

4.7.1 Enabling resource annotation

When using MaxIDE, or any Ant scripts generated by MaxIDE, resource annotation is set up and run
automatically.

If you are using an alternative method to build your code, the MaxCompiler infrastructure must know
where your source code files are located on the file system. MaxCompiler uses the MAXSOURCEDIRS

environment variable to specify the directories containing source code used by your project. These
files are then copied to the build directory during the build process and annotated with resource usage
information.

The MAXSOURCEDIRS environment variable specifies one or more source code directories separated
by colons (:). For example: /home/user/src/dir1:/home/user/src/dir2.

W Each directory in MAXSOURCEDIRS must be the parent of a package directory named in the
package declaration of a source file.

Given a source file SimpleKernel.maxj located in the directory

/home/user/workspace/tutorial chap02 example2 simple/EngineCode/src/simple

containing the declaration package simple, this example would require a value of

/home/user/workspace/tutorial chap02 example2 simple/EngineCode/src

in MAXSOURCEDIRS.

W
If you change MAXSOURCEDIRS using MaxIDE’s Run→Run Configurations. . . dialog, your set-
ting is displayed in the dialog window and used. Unsetting it reverts it to the default and stops
it from being displayed.
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Exercises
Exercise 1: M-Fold simple Kernel

Modify the simple example Kernel (a copy of which is provided in the exercises folder for you to
change) that we have worked through in this section to work withM parallel streams. The Kernel should
serve M independent streams as sketched in Figure 20. Replicating a single stream computation (also
called a pipe) within a Kernel is a common design pattern for creating dataflow engine implementations.
For applications that show sufficient parallelism, mapping multiple pipes into a Kernel design greatly
increases the dataflow engine performance.

Name the stream inputs and outputs x1, x2, ..., xM and y1, y2, ..., yM, respectively. The number of
streams M should be passed to the Kernel program as a constructor argument.

y0

x0

*

+

y1

x1

*

+

yM

xM

*

+

...

Figure 20: Sketch of the M -fold simple Kernel
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Listing 12: Simple CPU application (SimpleCpuCode.c).
1 /∗∗
2 ∗ Document: MaxCompiler tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 4 Example: 2 Name: Simple
4 ∗ MaxFile name: Simple
5 ∗ Summary:
6 ∗ Takes a stream and for each value x calculates xˆ2 + x.
7 ∗/
8 #include <stdint.h>
9 #include <MaxSLiCInterface.h>

10 #include ”Maxfiles.h”
11
12 int check(float ∗dataOut, float ∗expected, int size)
13 {
14 int status = 0;
15 for( int i=0; i < size; i++)
16 {
17 if (dataOut[i] != expected[i ]) {
18 fprintf ( stderr , ”Output data @ %d = %1.8g (expected %1.8g)\n”,
19 i , dataOut[i ], expected[i ]) ;
20 status = 1;
21 }
22 }
23 return status;
24 }
25
26 void SimpleCPU(int size, float ∗dataIn, float ∗dataOut)
27 {
28 for ( int i=0 ; i<size ; i++) {
29 dataOut[i] = dataIn[ i ]∗dataIn[ i ] + dataIn[ i ];
30 }
31 }
32
33 float dataIn[1024];
34 float dataOut[1024];
35 float expected[1024];
36 const int size = 1024;
37
38 int main()
39 {
40 for( int i = 0; i < size; i++) {
41 dataIn[ i ] = i + 1;
42 dataOut[i] = 0;
43 }
44
45 SimpleCPU(size, dataIn, expected);
46 Simple(size, dataIn, dataOut);
47
48 printf ( ”Running DFE.\n”);
49 int status = check(dataOut, expected, size);
50 if (status)
51 printf ( ”Test failed .\n”) ;
52 else
53 printf ( ”Test passed OK!\n”);
54 return status;
55 }
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Listing 13: Resource usage report for the simple Kernel (SimpleKernel.maxj.annotated).

1 LUTs FFs BRAMs DSPs : SimpleKernel.java

2 540 719 0.0 2 : resources used by this file

3 0.18% 0.12% 0.00% 0.10% : % of available

4 6.98% 7.14% 0.00% 100.00% : % of total used

5 62.79% 59.62% 0.00% 100.00% : % of user resources

6
7 : package chap04_gettingstarted.ex2_simple;

8 :

9 : import com.maxeler.maxcompiler.v2.

kernelcompiler.Kernel;

10 : import com.maxeler.maxcompiler.v2.

kernelcompiler.KernelParameters;

11 : import com.maxeler.maxcompiler.v2.

kernelcompiler.types.base.DFEVar;

12 :

13 : public class SimpleKernel extends Kernel {

14 : public SimpleKernel(KernelParameters

parameters) {

15 : super(parameters);

16 :

17 : // Input

18 2 33 0.0 0 : DFEVar x = io.input("x", dfeFloat(8, 24)

);

19 :

20 538 686 0.0 2 : DFEVar result = x*x + x;

21 :

22 : // Output

23 : io.output("y", result, dfeFloat(8, 24));

24 : }

25 : }
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5
Debugging

[...] the realization came over me with full force that a good part of the remainder of my life
was going to be spent in finding errors in my own programs.

– Maurice Wilkes

MaxCompiler offers a number of methods for debugging a design. We can debug Kernels using
watches, simulation printf and DFE printf. Watches tell us the value of any specified DFEVar for
every tick that a Kernel is running. DFE and simulation printf allow us to print and format the print
values explicitly from streams within the Kernel on every tick, optionally enabled via a Boolean stream.
Watches and simPrintf are available in simulation only and ignored for DFE hardware runs, whereas
dfePrintf are available for both simulation and DFE hardware runs.

Two more advanced methods for debugging a DFE as it is running, or after it has run, are covered
in subsection 5.3.
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Figure 21: MaxIDE displaying simulation watch data

5.1 Simulation watches

A watch can be added to a stream in simulation to record the value of the stream on every Kernel tick.
To add a watch, we use a method of the class DFEVar called simWatch which takes a string

argument that is used to label the watch. When the Kernel is run in simulation it generates a report in
CSV (comma-separated values) format, containing data for variables which have been watched.

Listing 14 shows our moving average example with watches added to several of the streams. For
example, we can watch the input to the Kernel:

22 DFEVar x = io.input(”x” , dfeFloat(8, 24));
23 x.simWatch(”x”);

We can also watch intermediate values in the middle of the computation:

38 DFEVar prev = aboveLowerBound ? prevOriginal : 0;
39 prev.simWatch(”prev”);

Upon completion of the run, the CSV report can be accessed from within MaxIDE by way of the
“Simulation watch data” item that appears under the associated RunRule in the Project Explorer, as
seen in Figure 21.

The Simulation watch viewer can display large datasets and makes it possible to filter, search
through and export the data presented:

• the data may be filtered by way of a “Java expression filter” text field: boolean expressions written
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Figure 22: MaxIDE simulation watch viewer utilities

in the Java language may be used to display only these records for which the expression is true.
The string names used in the simWatch call may be used as variables in these expressions;

• the records displayed may be searched by way of a Java expression of the same nature as with
the Java expression filter;

• a column selection tool may be used to display only selected columns;

• finally, the filtered data displayed may be exported in CSV format for use with external applica-
tions.

The tools and widgets used in the above operations are indicated in Figure 22.
When an application is run from within MaxIDE, the file containing the original data presented in the

Simulation watch viewer appears under the debug directory of the RunRule folder of the project. When
the application is run from the command line, this file appears under a debug directory in the working
directory. This directory may be named debug or have a name of the form debug N, where N is an
index used to make this directory name unique. The naming of this debug directory is covered further
in subsection 10.13.

The output file name is formed by concatenating watch with the name of Maxfile and the name of
your Kernel, e.g. watch Watches WatchesKernel.csv.

By default, debug output is produced for all ticks while the kernel is running. The function
max watch range is used to limit debug output for ticks to a given range:

void max watch range(
max actions t ∗actions,
const char ∗kernel name,
int start tick ,
int num ticks);
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Listing 14: Program for the moving average Kernel with watches (WatchesKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 5 Example: 1 Name: Watches
4 ∗ MaxFile name: Watches
5 ∗ Summary:
6 ∗ Kernel that computes a three point moving average with boundaries,
7 ∗ while printing watch information.
8 ∗/
9 package watches;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 class WatchesKernel extends Kernel {
16
17 WatchesKernel(KernelParameters parameters) {
18 super(parameters);
19
20 // Input
21 DFEVar n = io.scalarInput(”n”, dfeUInt(32)) ;
22 DFEVar x = io.input(”x” , dfeFloat(8, 24));
23 x.simWatch(”x”);
24
25 // Data
26 DFEVar prevOriginal = stream.offset(x, -1);
27 prevOriginal .simWatch(”prevOriginal”);
28 DFEVar nextOriginal = stream.offset(x, 1);
29
30 // Control
31 DFEVar count = control.count.simpleCounter(32, n);
32 count.simWatch(”cnt”);
33 DFEVar aboveLowerBound = count > 0;
34 DFEVar belowUpperBound = count < n - 1;
35 DFEVar withinBounds = aboveLowerBound & belowUpperBound;
36 aboveLowerBound.simWatch(”aboveLowerBound”);
37
38 DFEVar prev = aboveLowerBound ? prevOriginal : 0;
39 prev.simWatch(”prev”);
40 DFEVar next = belowUpperBound ? nextOriginal : 0;
41
42 DFEVar divisor = withinBounds ? constant.var(dfeFloat(8, 24), 3) : 2;
43
44 DFEVar result = (prev + x + next) / divisor ;
45 result .simWatch(”result”);
46
47 // Output
48 io .output(”y” , result , dfeFloat(8, 24));
49 }
50
51 }
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Figure 23: Simulation printf output in MaxIDE

5.2 Simulation and DFE printf

simPrintf and dfePrintf behave similarly to printf in C.
The basic form of a simPrintf and dfePrintf prints the formatted message to the standard

output of the application with the current value of the supplied list of objects for every tick:

void debug.simPrintf(String message, Object... args)
void debug.dfePrintf(String message, Object... args)

To print the message only when a certain condition is met, a Boolean DFEVar stream can be
supplied as a condition:

void debug.simPrintf(DFEVar condition, String message, Object... args)
void debug.dfePrintf(DFEVar condition, String message, Object... args)

The message is only printed when condition evaluates to 1.
The arguments args can contain Java variables (Byte, Short, Integer, Long, Float or Double)

or DFEVar streams. The argument message should contain corresponding format specifiers. All familiar
format specifiers from C printf are provided, with the variation that %o prints in binary, rather than
octal.

The outputs of dfePrintf and simPrintf appear on the standard output of the application and
are also saved to files upon completion of a run:

• dfePrintf produces an output file per allocated engine. These files, available in the debug
directory, are named using the scheme debug dfeprintf.TAG.txt, where TAG is chosen to
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ensure that file names are unique. The outputs of dfePrintf are flushed upon deallocation of
the engine used or, if the basic static interface is used, upon deallocation of the maxfile using the
MAXFILE free() function, where MAXFILE is the name of the maxfile;

• the outputs of simPrintf are collated into a single debug printf.txt file in the debug directory
of the RunRule;

• simPrintf accepts an extra string argument NAME for outputs that should be written to a sepa-
rate file:

void debug.simPrintf(String NAME, String message, Object... args)
void debug.simPrintf(String NAME, DFEVar condition, String message, Object... args)

The output will then appear in a file named debug printf NAME.txt in the debug directory.

Listing 15 shows our familiar moving average example with several simPrintfs.
The first simPrintf shows the current value output by the counter, which gives us the current tick

count on every Kernel tick:

30 debug.simPrintf(”Tick: %d ” , count);

The second simPrintf conditionally prints a message when the current position in the stream is
in a boundary:

38 debug.simPrintf(˜withinBounds, ”[In boundary (withinBounds = %d)] ”, withinBounds);

The final simPrintf prints the result produced in the current Kernel tick:

43 debug.simPrintf(”Result: %.3g\n”, result) ;

The output from the application is shown in Listing 16.
When the application is run from within MaxIDE, this output is also visible in files that appear under

the associated RunRule in the Project Explorer, upon completion of the run, as seen in figure Figure 23.
The on-disk file containing the simPrintf and dfePrintf outputs, similar to watch data, is available
in a debug directory in the associated RunRule folder.

When the application is run from the command line, the output files are available in the debug

subdirectory of the current directory, or in a directory of the form debug N, where N is chosen to ensure
that this directory name is unique.

The naming of the debug directories and the configuration variables that affect it are described in
subsection 10.13.
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Listing 15: Program for the moving average Kernel with printfs (PrintfKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 5 Example: 2 Name: Printf
4 ∗ MaxFile name: Printf
5 ∗ Summary:
6 ∗ Kernel that computes a three point moving average with boundaries
7 ∗ printing debug information.
8 ∗/
9 package printf;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 class PrintfKernel extends Kernel {
16
17 PrintfKernel (KernelParameters parameters) {
18 super(parameters);
19
20 // Input
21 DFEVar n = io.scalarInput(”n”, dfeUInt(32)) ;
22 DFEVar x = io.input(”x” , dfeFloat(8, 24));
23
24 // Data
25 DFEVar prevOriginal = stream.offset(x, -1);
26 DFEVar nextOriginal = stream.offset(x, 1);
27
28 // Control
29 DFEVar count = control.count.simpleCounter(32, n);
30 debug.simPrintf(”Tick: %d ” , count);
31 DFEVar aboveLowerBound = count > 0;
32 DFEVar belowUpperBound = count < n-1;
33 DFEVar withinBounds = aboveLowerBound & belowUpperBound;
34
35 DFEVar prev = aboveLowerBound ? prevOriginal : 0;
36 DFEVar next = belowUpperBound ? nextOriginal : 0;
37
38 debug.simPrintf(˜withinBounds, ”[In boundary (withinBounds = %d)] ”, withinBounds);
39 DFEVar divisor = withinBounds ? constant.var(dfeFloat(8, 24), 3) : 2;
40
41 DFEVar result = (prev+x+next)/divisor;
42
43 debug.simPrintf(”Result: %.3g\n”, result) ;
44 // Output
45 io .output(”y” , result , dfeFloat(8, 24));
46 }
47 }

Listing 16: Example printf output

Tick: 0 [In boundary (withinBounds = 0)] Result: 3

Tick: 1 Result: 4

Tick: 2 Result: 6

Tick: 3 Result: 5

Tick: 4 Result: 3

Tick: 5 Result: 1

Tick: 6 Result: 4

Tick: 7 [In boundary (withinBounds = 0)] Result: 6
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Launch debug mode

Figure 24: Launching a MaxCompiler project in debug mode.

5.3 Advanced debugging

Debugging with watches, simulation printf and DFE printf makes it possible to solve a range
of issues that may appear in a design; such methods are primarily useful for inspecting the state of
kernels.

Since the Manager is a parallel and asynchronous system with many processing units, it is possible
to write control code for the CPU that leads to deadlocks such as insufficient data being either produced
or consumed by the Kernels. This section presents two further tools that help to identify such issues
with the Manager and with the control software on the CPU:

• the graphical debugger in MaxIDE makes it possible to checkpoint the CPU Code of the applica-
tion and inspect the state of the DFE interactively;

• the MaxDebug tool is a command line utility that obtains similar information on systems where
MaxIDE may not be present, and allows inspection of debug snapshots that are optionally pro-
duced by SLiC applications as their actions are completed.

The examples in this section are based on a bitstream that performs a computation of the type
s = x + y, where x and y are input streams and s is an output stream, as seen in the following code

60 Multiscale Dataflow Programming



5. Debugging

Get snapshot Execute step

Stop execution

Figure 25: MaxIDE entering the debug mode.

snippet:

24 DFEVar x = io.input(”x” , type);
25 DFEVar y = io.input(”y” , type);
26 DFEVar sum = x + y;
27 io .output(”s” , sum, type);

This Kernel expects to read one word of data from each input stream per tick, and to write one
word of data to the output stream per tick. The design malfunctions if the amount of data supplied
or consumed by the CPU does not match the number of ticks of the Kernel. The examples below
demonstrate how to diagnose such issues in live DFEs.

5.3.1 Launching MaxIDE’s debugger

A MaxCompiler project can be launched in debug mode from within MaxIDE by pushing the debug
button in the toolbar, or by selecting the “Debug” item in the contextual menu of a Run Rule. This is
illustrated in Figure 24.

After the project has been built, MaxIDE switches to a debugging perspective and presents various
views of the program being run, as displayed in Figure 25. This mode makes it possible to execute the
program one instruction at a time, enabling us, in particular, to find locations where the program might
stall. At any time after a run has been launched, it is possible to obtain a snapshot of the state of the
DFE by pushing the “Get snapshot” button in the debugging toolbar; this is the button with the bug icon
towards the left-hand of the toolbar. MaxIDE then shows a graphical view of the Manager graph.
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5.3.2 Kernel halted on input

Running the DFE or Simulation Run Rules for the example project tutorial-chap5-example3 as
distributed, results in applications that hang: the applications either fail with a timeout or need to be
terminated manually by way of the red Terminate button in the console window.

W
When running on a DFE, SLiC functions return an error when streaming operations last more
than a prescribed time; simulation does not support such time-outs, and simulated applications
with stalling designs should be terminated manually.

Launching the application in debug mode and tracing its execution step by step allows us to see
that the function HaltedOnInput() in the CPU Code is called but does not return.

At this stage, the state of the Manager can be retrieved by pushing the snapshot button, producing
the view in Figure 26. The Kernel is represented by the yellow rectangle in the middle of the graph,
surrounded by nodes that connect its inputs and outputs to the CPU.

Selecting the Kernel, by clicking with the left mouse button, indicates that its status is “Halted on

input”. In general, the yellow coloring of this state helps to locate problems in the data flow. The Kernel
would be colored green if it had run for the required number of ticks.

Examining the CPU code, we see that the number of ticks to run the Kernel has a value that is too
large by 5000: the Kernel was running for too long and its input could not read data after size ticks.

30 HaltedOnInput(size + 5000, x, sizeBytes, y, sizeBytes, s, sizeBytes);

W
Note that the current tick count in the MaxDebug output for a Kernel may not be exactly the
number expected, given the number of inputs consumed or the number of ticks that it is set to
run for, as MaxCompiler may schedule extra ticks into the Kernel.

5.3.3 Kernel halted on output

The project tutorial-chap5-example4 displays a different problem from the previous one: in the
code listing below, the size of the output stream s is now too small to accommodate the data produced
by the Kernel, leading to a stall.

29 HaltedOnOutput(size, x, sizeBytes, y, sizeBytes, s, sizeBytes −5000∗sizeof(int32 t));

The result of this is shown graphically in Figure 27: the Kernel is marked as “Halted on output”
and the output stream s is marked as “stalled”.

When the extra subtraction is removed, the application functions correctly; if run in the debugger
with a breakpoint added after the call to HaltedOnOutput(), then the ensuing snapshot of the DFT
shows a graph wherein each status is colored green.

5.3.4 Stream status blocks

Managers have an option to globally enable stream status blocks, which are additional blocks that
collect information on the streams in and out of a Kernel. The status of these blocks can be read by
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Figure 26: State of the Manager while the function HaltedOnInput() is hanging: the Kernel requires
more data than is available.

the debugging tools to get additional information from the DFE at run-time. See section 13 for more
information on Managers.

W The Manager requires rebuilding when stream status blocks are enabled, as they must be built
into the .max file.

We can take the previous example and enable the stream status blocks using the
setEnableStreamStatusBlocks() method on the Standard Manager:

30 manager.setEnableStreamStatusBlocks(true);

For a Custom Manager, stream status blocks are enabled in the debug property of the Manager
(see the “MaxCompiler Manager Compiler Tutorial” document).

The project tutorial-chap5-example5 contains a Manager with stream status enabled. Launch-
ing the application in debug mode with a breakpoint after the call to DebugWithStatusBlocks(), and
displaying the state of the DFE yields the graph in Figure 28. Selecting a stream status block by clicking
in the graph displays a number of properties of the stream, including the amount of data transported
and its overall status, along with various performance-related characteristics.
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Figure 27: State of the Manager while the function HaltedOnOutput() is hanging: the Kernel produces
more data than is consumed by the output stream s.

5.3.5 Debugging with MaxDebug

MaxDebug is a command line utility that makes it possible to inspect the state of a dataflow engine in
a non-interactive fashion while it is running of after is has run. MaxDebug’s capabilities are as follows:

• it can obtain the status of a local hardware dataflow engine while it is running or after it has run;

• it can obtain the status of a simulated dataflow engine while it is running or after it has run, as
long as the simulated system is running;

• it can be used to display debug snapshots optionally generated by SLiC applications at the com-
pletion of each action, both for local engines and engines provided by an MPC-X appliance.

To enable the tool to have this flexibility, some of its features are controlled by environment variables,
and these must be modified according to the nature of the dataflow engine to be interrogated:

• for hardware dataflow engines, the environment variable MAXELEROSDIRmust point to the MaxelerOS
installation, and the library $MAXELEROSDIR/lib/libmaxeleros.somust be preloaded by MaxDe-
bug:

export LD_PRELOAD=$MAXELEROSDIR/lib/libmaxeleros.so:$LD_PRELOAD

• for simulation, the environment variable MAXCOMPILERDIR must point to the simulation libraries
in the MaxCompiler installation, and the environment must be set as:
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Figure 28: State of the Manager after the function DebugWithStatusBlocks() has completed:
stream status blocks indicate the streams’ data throughput and overall status.

export MAXELEROSDIR=$MAXCOMPILERDIR/lib/maxeleros-sim

export LD_PRELOAD=$MAXELEROSDIR/lib/libmaxeleros.so:$LD_PRELOAD

Further, in the case of simulation, the name of of the simulated engine must be specified to
MaxDebug by way of the -d option. This name is based on the socket name of the simulated
system, which is available in the Simulator tab of the Run Rule editor of the corresponding
project.

Listing 17: MaxDebug command-line options

1 $ maxdebug

2 MaxDebug version (r39840)

3
4 Usage:

5 maxdebug [-v] [-g <prefix>] [-s <prefix>] [-n] [-r]

6 [-k <kernel>] [-L|-a <name>|-i <id>] [-R <mpcx>]

7 [-d <device>] [<maxfile>]

8 where:

9 -r dump scalar inputs / mapped register values

10 -m dump mapped memories

11 -g draw a manager graph annotated with runtime information
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12 as a .png file for every device

13 -k <kernel> limit output to the given kernel

14 -x print all numbers in hexadecimal format

15 -v more verbose output

16 -s draw the static manager graph from the .max file

17 -d <device> use <device> when debugging the design (e.g sim0:sim,

18 /dev/maxeler0, or index if used with -a, -i or -f)

19 -f <file> file containing the maxdebug snapshot to use

20 -a <action> name of the debug snapshot to retrieve from an MPC-X

21 appliance

22 -i <id> id of the debug snapshot to retrieve from an MPC-X

23 appliance

24 -L retrieve a list of maxdebug snapshots held by an MPC-X

25 appliance

26 -R <mpcx> use <mpcx> as the IP address or hostname of an MPC-X

27 appliance

28 <maxfile> bitstream .max file (mandatory, unless -L is present)

Kernel halted on input on a simulated dataflow engine Running the Simulation Run Rules in the
example project tutorial-chap5-example3, as above, produces applications that hang. To investi-
gate this problem using MaxDebug, we open a terminal, change directory to the root of the MaxCompiler
project, and set the environment for simulation:

$ export MAXELEROSDIR=$MAXCOMPILERDIR/lib/maxeleros-sim/

$ export LD_PRELOAD=$MAXELEROSDIR/lib/libmaxeleros.so:$LD_PRELOAD

We can then launch MaxDebug:

$ maxdebug -d jHaltedOnInput0:jHaltedOnInput -g graph RunRules/Simulation/

maxfiles/HaltedOnInput.max

Here, the arguments supplied to MaxDebug are:

• -d jHaltedOnInput0:jHaltedOnInput specifies the name of the engine, which is constructed
as <engine-name>:<socket-name>, based on the index of the engine in the simulated system
and the socket name of the simulated system.

In this instance, the index of the engine is “0” (there being only one engine), and the socket name
of the simulated system is “jHaltedOnInput”.

For a hardware dataflow engine, this argument is not required.

• -g graph instructs MaxDebug to output an image of the state of the design. The generated file
will have “graph” as a prefix;

• RunRules/Simulation/maxfiles/HaltedOnInput.max is the path to the .max file.

The console output of this command is shown in Listing 18 and the .png file shown in Figure 29 is
produced.
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Listing 18: MaxDebug console output

1 MaxDebug version (r39840)

2
3 ============================

4 Kernel : HaltedOnInputKernel

5 ============================

6
7 Kernel summary

8 --------------

9 Name : HaltedOnInputKernel

10 Fill level : 10 / 10

11 Flush level : 0 / 10

12 Flushing : False

13 Ran for : 9999 / 15000 cycles

14 Derived status : Halted on input

15
16
17 Stream summary

18 --------------

19 Name Id Type #Outstanding Reads Derived Status

20 ---- -- ---- ------------------ --------------

21 x 0 input 1 reading / no data available

22 y 1 input 1 reading / no data available

23 s 0 output writing
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Figure 29: State of the Manager while the function HaltedOnInput() is hanging, as represented by
MaxDebug.
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Saving MaxDebug snapshots for later use In the sections above, the information provided by
MaxDebug was taken directly from an engine at runtime. In certain cases, we may want to save a
snapshot of the content of the DFE for later use. To do this, we instruct SLiC to save a snapshot
automatically on completion of an action, by setting default maxdebug mode in the SLIC CONF envi-
ronment variable:

$ env SLIC_CONF="default_maxdebug_mode=MAX_DEBUG_ALWAYS" ./HaltedOnInput

In SLiC’s dynamic interface, the same result can be achieved on a per-action basis:

void max set debug(
max actions t ∗actions,
const char ∗name,
max debug mode t debug mode);

where the enum debug mode must be one of:

• MAX DEBUG NEVER: where no debug snapshot should be saved for the action;

• MAX DEBUG ON ERROR: where a debug snapshot should only be saved in case of stall;

• MAX DEBUG ALWAYS: where SLiC should always produce a debug snapshot;

and where name is used to identify the snapshot.
In SLiC’s basic and advanced static interfaces, the MaxFile stem is used as the name of the snap-

shot.
On completion of the actions, the debug snapshots are saved in the default debug directory with

file names of the form “maxdebug NAME.TIMETAG”, where NAME is the parameter specified in the call
to max set debug or the MaxFile stem name, and where TIMETAG is a timestamp used to make the
file unique. These snapshots may be examined by the maxdebug command, using an additional -f
<file> flag to specify the snapshot file to use, for example:

$ maxdebug -r -f <snapshot> <maxfile>

Where arrays of engines are used, the content of a specific engine may be obtained by using the
-d <index> option, where the index ranges between 0 and N − 1 for an array of N devices.
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A Type is defined as the range of significance of a [...] function.
– Bertrand Russell, Logic and Knowledge, 1971

Variables in a dataflow program are in fact portals through which streams of numbers pass while be-
ing represented in a specific way by zeros and ones. Contrary to CPUs, a multiscale dataflow computer
allows us to use zeros and ones in any way we like (or don’t like) to represent the number. “Multiscale”
dataflow computing means that if necessary, one can extend the optimizations and numerical algorithm
design all the way to the bit level. For example, a loop variable that goes from 0 to 100 only really needs
7 bits.

Luckily, MaxCompiler can infer most variables, and initially, an implementation only needs to declare
input variables. MaxCompiler uses the declarations of input and output variables to generate the SLiC
interface for the Kernel implementation. The basic type for any other variable is DFEVar.

From an algorithmic perspective, any variable in a program has a range and precision require-
ments. From a practical perspective, we are used to assigning standard types such as int, float, and
double to variables in our calculations. Consequently, MaxCompiler offers DFEInt and DFEFloat,
corresponding to matching variable declarations in the resulting SLiC interface.
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KernelType

DFEComplexType DFEArrayType

DFEFix DFEFloatDFEUntypedConst

KernelTypeVectorizable

DFEStructType

DFERawBits

DFEType DFEVectorBaseType

DFEVectorType

dfeUInt

dfeInt

dfeBool

Figure 30: Class hierarchy for data types

Figure 30 gives an overview of the class hierarchy for data types used in the Kernel Compiler. There
are two categories of Kernel types within the Kernel Compiler:

Primitive types (for example DFEFloat) inherit from DFEType and can be used with DFEVar variables
as we have seen in previous chapters.

Composite types (for example DFEComplexType) do not extend DFEType: these internally translate
operations into operations on multiple DFEVar variables.

MaxCompiler and MaxIDE use an extended version of Java called MaxJ which adds operator over-
loading semantics to the base Java language. This enables an intuitive programming style, for example
with arithmetic expressions including DFEVar objects being possible. MaxJ source files have the .maxj

file extension to differentiate them from pure Java .

6.1 Primitive types

Every DFEVar instance has an associated representation type which is represented by a DFEType

object. These DFEType objects are usually assigned automatically by the Kernel Compiler or you can
specify them through casting or specification of I/O types. You can query the type of a DFEVar object
at any point using the DFEVar.getType method.

When it is necessary to explicitly specify a type for DFEVar, for example when creating an input or
optimizing a component, instances of DFEType are created indirectly using one of the following methods
which are available from the Kernel class:

• dfeFloat(int exponent bits, int mantissa bits)

Creates a floating-point type parameterized with mantissa and exponent bit-widths. With 8 expo-
nent bits and 24 mantissa bits, the format is equivalent to single-precision floating point. Similarly
double-precision has an exponent of 11 bits and a mantissa of 53 bits.

• dfeFixOffset(int num bits, int offset, SignMode sign mode)

Creates a fixed-point type with parameterizable size and binary point offset and a choice of un-
signed (SignMode.UNSIGNED) or two’s complement (SignMode.TWOSCOMPLEMENT) modes for
number representation.
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Listing 19: Kernel demonstrating types and type casting (TypeCastKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 6 Example: 1 Name: Typecast
4 ∗ MaxFile name: TypeCast
5 ∗ Summary:
6 ∗ Kernel that casts from an unsigned int to a float and back.
7 ∗/
8
9 package typecast;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEFloat;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15
16 class TypeCastKernel extends Kernel {
17
18 TypeCastKernel(KernelParameters parameters) {
19 super(parameters);
20
21 // Type declarations
22 DFEFloat singleType = dfeFloat(8, 24); // useful : makes it easy to change types consistently
23
24 // Input
25 DFEVar a = io.input(”a”, dfeUInt(8)) ;
26 DFEVar x = io.input(”x” , singleType);
27
28 // Cast input ’a’ from unsigned 8-bit integer to
29 // IEEE single precision float using named type,
30 // then add 10.5
31 DFEVar result = a.cast(singleType) + 10.5;
32
33 // Cast input ’x’ from IEEE single precision float
34 // to unsigned 8-bit integer using explicit type
35 DFEVar x int = x.cast(dfeUInt(8)) ;
36
37 // Output
38 io .output(”b”, result , singleType);
39 io .output(”y” , x int , dfeUInt(8)) ;
40 }
41
42 }

• dfeUInt(int bits)

An alias for dfeFixOffset(bits, 0, SignMode.UNSIGNED).

• dfeInt(int bits)

An alias for dfeFixOffset(bits, 0, SignMode.TWOSCOMPLEMENT).

• dfeBool()

An alias for dfeFixOffset(1, 0, SignMode.UNSIGNED). dfeBool can safely be used for all
Boolean operations with numeric values 1 and 0 representing true or false respectively.

• dfeRawBits()

A Kernel type representing a binary word of user-defined length which does not have a specific
Kernel data type. DFERawBits streams are used to prevent invalid operations being performed
inadvertently on collections of bits for which operator rules are not valid. For example, it is invalid
to apply any floating-point operation to the result of DFEVar.slice. Streams of DFERawBits can
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be cast to any other type of the same bit-width with no overhead.

The dataflow program in Listing 19 defines a number of primitive-type streams and operations
on their data types. The example creates an input stream and specifies its data type by calling
dfeUInt(8):

25 DFEVar a = io.input(”a”, dfeUInt(8)) ;

This dfeUInt method call creates and returns an object of class DFEFix, which directs the input
method to create a DFEVar object for this input with a type of unsigned 8-bit integer.

Developers may explicitly change the type of data as it flows through the graph using type casts.
Type casts are typically used to change number representations as variables are reused in a dataflow
program. Type casts are introduced by calling the cast method on DFEVar instances, for example:

35 DFEVar x int = x.cast(dfeUInt(8)) ;

In addition to integers and floating point numbers, multiscale dataflow also supports fixed point
numbers (DFEFix). Fixed point numbers allow us to store fractions and for small range are a lot more
efficient than floating point numbers. The main drawback of fixed point numbers is that the algorithm
designer has to think through range and precision requirements on the variables, and consider the
distribution of values for a particular variable very carefully. For iterating algorithms it is also necessary
to occasionally re-normalize the values to avoid dealing with a large range of values.

W
Type-casting operations, particularly those converting between floating and fixed point types,
can be costly in terms of resource usage. The use of type casts should therefore be minimized.

To avoid unexpectedly large designs, MaxCompiler does not automatically infer type casts but rather
insists that type casting be used explicitly where necessary. For example, adding a floating point number
to a fixed point number leads to a compilation error and prompts you to explicitly cast one input type to
match the other.

W
When casting between a floating-point number and an integer, MaxCompiler rounds to the
nearest integer. This is different to the behavior in many other programming languages (such
as C/C++, Java and Fortran), where the floating-point number is truncated.

Users need to also be aware that whenever constants are used in a Kernel design without an
explicit type, the Kernel Compiler assigns these constants a type of DFEUntypedConst. An example of
an untyped constant can be seen in the example:

31 DFEVar result = a.cast(singleType) + 10.5;

This DFEUntypedConst type also propagates forward through the Kernel graph until the type for
an operation can be determined. In the example, the addition operator works with the DFEVar called a,
which is cast to a type of single precision floating-point. In this case the value 10.5 is also interpreted
as a single-precision floating-point number. In some situations, a Kernel design may use an untyped
constant in a context where it is not possible to determine the types to use and it is not possible to
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forward-propagate the untyped constant type. For example, with a conditional assignment where both
options are constants we get a compile-time error until at least one of the inputs is explicitly given a
type.

6.2 Composite types

While DFEVar and DFEType provide the fundamental design elements needed to create Kernel designs,
more succinct solutions can often be made using composite constructs.

The composite types available in the Kernel Compiler are DFEComplexType, DFEVectorType,
and DFEStructType.

6.2.1 Composite complex numbers

Listing 20 shows a Kernel design that takes in two complex numbers, adds them together and multiplies
the result by the real number 3.

A complex number type is defined to be used throughout the design using an DFEFloat object
returned from a dfeFloat call:

16 public DFEComplexType cplxType =
17 new DFEComplexType(dfeFloat(8,24));

This declares that the real and imaginary parts for instances of complex numbers created with this
type are to be stored as floating-point numbers. We could equally have used more or fewer bits for our
floating-point type or a DFEFix type.

This type is used to specify the types of the inputs and output:

23 DFEComplex cplxIn1 = io.input(”cplxIn1”, cplxType);
24 DFEComplex cplxIn2 = io.input(”cplxIn2”, cplxType);

29 io .output(”cplxOut”, result , cplxType);

In order to actually refer to our complex variables we use Java objects of type DFEComplex. The
DFEComplex class is conceptually paired with the DFEComplexType class in the same way that DFEVar

and DFEType are paired.
DFEComplex type supports the familiar multiplication, subtraction and addition operators:

26 DFEComplex result = (cplxIn1 + cplxIn2) ∗ 3;

In order to run the example on a DFE, we stream the data into the dataflow engine in the correct
format. The is done as a continuous stream of single-precision floating-point numbers. Pairs of floating-
point numbers are interpreted as real followed by imaginary parts.

In the CPU code for this example (Listing 21), two streams of complex numbers are initialized and
streamed to the dataflow engine. The first stream contains the complex numbers {(1 + 2i), (3 +

4i)} and the second stream contains {(5 + 6i), (7 + 8i)}:
50 float cplxIn1 [] = {
51 1, 2, // ( real , imaginary)
52 3, 4 };
53
54 float cplxIn2 [] = { 5, 6, 7, 8 };
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Listing 20: Kernel demonstrating complex number support (ComplexKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 6 Example: 2 Name: Complex
4 ∗ MaxFile name: Complex
5 ∗ Summary:
6 ∗ Kernel that performs complex arithmetic.
7 ∗/
8 package complex;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEComplex;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEComplexType;
14
15 class ComplexKernel extends Kernel {
16 public DFEComplexType cplxType =
17 new DFEComplexType(dfeFloat(8,24));
18
19 ComplexKernel(KernelParameters parameters) {
20 super(parameters);
21
22 // Inputs
23 DFEComplex cplxIn1 = io.input(”cplxIn1”, cplxType);
24 DFEComplex cplxIn2 = io.input(”cplxIn2”, cplxType);
25
26 DFEComplex result = (cplxIn1 + cplxIn2) ∗ 3;
27
28 // Output
29 io .output(”cplxOut”, result , cplxType);
30 }
31 }
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Listing 21: Main function for CPU code demonstrating complex number I/O (ComplexCpuCode.c).
47 int main()
48 {
49 const int size = 2;
50 float cplxIn1 [] = {
51 1, 2, // ( real , imaginary)
52 3, 4 };
53
54 float cplxIn2 [] = { 5, 6, 7, 8 };
55
56 float expectedOut[] = {
57 18, 24, // ( real , imaginary)
58 30, 36 };
59
60 float ∗actualOut = malloc(sizeof(expectedOut));
61 memset(actualOut, 0, sizeof(expectedOut));
62
63 ComplexCPU(
64 size,
65 cplxIn1,
66 cplxIn2,
67 actualOut);
68
69 printf ( ”Running DFE.\n”);
70 Complex(
71 size,
72 cplxIn1,
73 cplxIn2,
74 actualOut);
75
76 int status = check(actualOut, expectedOut, size);
77 if (status)
78 printf ( ”Test failed .\n”) ;
79 else
80 printf ( ”Test passed OK!\n”);
81
82 return status;
83 }
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6.2.2 Composite vectors

Similarly to DFEComplex/DFEComplexType variables, DFEVector/DFEVectorType variables allow mul-
tiple variables to be grouped together. These vectors can be used to hold any type of Kernel data-type.

W
As DFEVectors are a composite type, this means they are effectively just a wrapper around
multiple DFEVars and so are not appropriate for storing chunks of data in a DFE. Creating a
DFEVector with more than a few elements will result in excessive DFE resource usage. For
details on how to store data in a DFE, see section 12.

Listing 22: Kernel demonstrating vector support (VectorsKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 6
4 ∗ Example: 3
5 ∗ Summary:
6 ∗ Kernel that doubles values in a vector.
7 ∗/
8 package vectors;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVector;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVectorType;
15
16 class VectorsKernel extends Kernel {
17
18 VectorsKernel(KernelParameters parameters, int vectorSize) {
19 super(parameters);
20
21 DFEVectorType<DFEVar> vectorType =
22 new DFEVectorType<DFEVar>(dfeUInt(32), vectorSize);
23
24 // Input
25 DFEVector<DFEVar> inVector = io.input(”inVector”, vectorType);
26
27 // Explicitly double each vector element
28 DFEVector<DFEVar> doubledVector =
29 vectorType.newInstance(this);
30
31 for ( int i = 0; i < vectorSize; i++)
32 doubledVector[i] <== inVector[i] ∗ 2;
33
34 // Double vector by multiplying with another
35 // (constant) vector [2, 2].
36 DFEVector<DFEVar> quadroupledVector =
37 doubledVector ∗ constant.vect(2, 2);
38
39 // Double vector by multiplying all elements by a single value
40 DFEVector<DFEVar> octupledVector =
41 quadroupledVector ∗ 2;
42
43 // Output
44 io .output(”outVector”, octupledVector, vectorType);
45 }
46
47 }
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Listing 22 shows a Kernel which uses a vector of two DFEVar variables and multiplies this pair of
streams by 8.

We first create the DFEVectorType to represent this vector:

21 DFEVectorType<DFEVar> vectorType =
22 new DFEVectorType<DFEVar>(dfeUInt(32), vectorSize);

The type is parameterized with the type of element the vector holds in angle-brackets, in this case
DFEVar, and the type of the contained element, which in this case is an unsigned 32-bit integers.

This vectorType is used to create an input which gives us our initial vectorized stream of DFEVar
pairs.

25 DFEVector<DFEVar> inVector = io.input(”inVector”, vectorType);

Now we have our input, the example multiplies the vector by 2, three different ways to demonstrate
various uses of DFEVector.

The first way we double our DFEVector is to operate on each of the elements in the vector individ-
ually (similarly to how we might work with an array in C or Java). To do this, we must first declare a new
“sourceless” DFEVector instance:

28 DFEVector<DFEVar> doubledVector =
29 vectorType.newInstance(this);

This DFEVector is sourceless until each of its elements are connected with streams of computation.
We connect these up using a Java for-loop as follows:

31 for ( int i = 0; i < vectorSize; i++)
32 doubledVector[i] <== inVector[i] ∗ 2;

In this loop each element of the DFEVector is connected to a stream indexed from the input
DFEVector using the <== operator (equivalent to x.connect(y)).

The above snippets demonstrate how to access individual elements of a vector, however in many
cases this can be quite cumbersome. In this case the multiplication operator for DFEVector is over-
loaded such that a new DFEVector can be constructed by multiplying two DFEVectors together as
follows:

36 DFEVector<DFEVar> quadroupledVector =
37 doubledVector ∗ constant.vect(2, 2);

The constant.vect() methods create new and constant DFEVector streams.
Again this example can be simplified further as we are multiplying all elements in the vector with

the same value. As such, we can take advantage of overloaded operators in DFEVector allowing an
operation to be applied to all elements using a single source stream as follows:

40 DFEVector<DFEVar> octupledVector =
41 quadroupledVector ∗ 2;

Finally, we connect our resultant vector to the output:

44 io .output(”outVector”, octupledVector, vectorType);

In order to run the example on a DFE, we stream data into the dataflow engine as a continuous block
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of 32-bit unsigned integers. In the following snippets from the CPU code for this example, a stream of
input vectors of 2 elements is initialized with incrementing values and transferred to the dataflow engine.
The series of vectors is therefore initialized to {{0,1}, {2,3}, {4,5}...}.

39 size t sizeBytes = vectorSize ∗ streamSize ∗ sizeof(uint32 t) ;
40 uint32 t ∗inVector = malloc(sizeBytes);

44 for ( int i = 0; i < vectorSize ∗ streamSize; i++) {
45 inVector[ i ] = i ;
46 }

55 Vectors(streamSize, inVector, expectedVector);

6.3 Available dataflow operators

Dataflow operators are overloaded operators that enable us to simply write expressions which then
get translated into dataflow graphs, and finally into DFE configurations. Both primitive and composite
streams implement overloaded operators. The operators that are available for a stream depend on the
underlying Kernel type of that stream (see Table 2).

Kernel Type = +1 -1 *1 /1 -1 <, <=, >, >= <<, >>, >>>1 &, ^, |1 ?: ~ []5 <==6 ===, !==

DFEFix, DFEInt X X X X X X X X X X2 X X3 X X
DFEUInt,
dfeBool

X X X X X X X X X2 X X3 X X

DFEFloat X X X X X X X X3 X X
DFERawBits X X X X2 X X3 X X

DFEComplexType X X X X X X X X
DFEStructType X X X
DFEVectorType X X4 X X
1 Includes compound assignment operators (+=, *=, >>= etc.).
2 Kernel Type must be 1-bit wide.
3 Equivalent of .slice(i) to select a single bit.
4 Returns indexed element from the DFEVector stream.
5 Not allowed as left-hand-side in a statement (i.e cannot do x[y]=z;).
6 <== is the connect operator, where x<==y is equivalent to x.connect(y).
7 Contained type of the multi-pipe stream must be 1-bit wide.

Table 2: Overloaded operators available by Kernel Type.

W The == and != operators have a special meaning in Java: they compare reference equality. To
compare the equality of streams, use the operators === and !==.
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W
The logical NOT (!), logical AND (&&) and logical OR (||) operators are not overloaded for
streams: it is not possible to replicate the conditional evaluation (or “short-circuiting”) semantics
in a dataflow program. You can directly replace these operators with the bit-wise AND & and bit-
wise OR | operators in many circumstances or use the ternary-if ?: operator where conditional
behavior is required.

W The modulus (%), increment (++) and decrement (--) operators are not implemented for any
streams.

Exercises
Exercise 1: Vectors

Design and test a Kernel that takes an input vector of four 32-bit unsigned integers, reverses the order
of the elements in the vector and sends them back out again.
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7
Scalar DFE Inputs and Outputs

In addition to streaming data back and forth between CPU and DFE, we also have the option to transfer
single values to and from the DFE at runtime. For example, the coefficients of the three-point moving
average can be declared as scalar inputs and can be set at runtime by the CPU. You can also think of
these scalar inputs as a set of registers that is mapped into the CPUs address space.

Or put in another way, in contrast to a parameter passed to the constructor of the Kernel class,
which requires recompilation, a scalar input can be set by the CPU application dynamically at runtime.

The dataflow program for a Kernel with a scalar input is shown in Listing 23. Figure 31 displays the
corresponding Kernel graph.

In this example, we use the method io.scalarInput to define b as a scalar input:

28 DFEVar b = io.scalarInput(”b”, singleType);

The method takes two parameters: a string for the name and its data type. The scalar input is
represented in the Kernel graph Figure 31 as two concentric rectangles.

MaxCompiler automatically adds the scalar inputs to the SLiC interface function for running the
design, as shown in the CPU code for this example:

50 AddScalar(size, scalarIn, dataIn, dataOut);

Transferring single scalar inputs and outputs back and forth from and to the DFE is not fast. The
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Listing 23: Program for the adder Kernel (AddScalarKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 7 Example: 1 Name: Add scalar
4 ∗ MaxFile Name: AddScalar
5 ∗ Summary:
6 ∗ Kernel that adds a scalar to a stream of values.
7 ∗/
8
9 package addscalar;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEFloat;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15
16 class AddScalarKernel extends Kernel {
17
18 AddScalarKernel(KernelParameters parameters) {
19 super(parameters);
20
21 // Typedef
22 DFEFloat singleType = dfeFloat(8, 24);
23
24 // Stream Input
25 DFEVar a = io.input(”a”, singleType);
26
27 // Scalar Input
28 DFEVar b = io.scalarInput(”b”, singleType);
29
30 DFEVar result = a + b;
31 // Stream Output
32 io .output(”c” , result , singleType);
33 }
34 }

way to use scalar inputs effectively is to set all scalar inputs in one go, then to run the kernel for a long
time, and then possibly to read all scalar output results back to the CPU. When accessing many scalar
IO variables with a single SLiC call, all the scalar values are streamed in a single transaction.

Exercises
Exercise 1: Scalar inputs

Given an example to calculate a moving average of a stream, modify it to include a scalar input indicating
the length of the input stream.

Test the Kernel design in simulation and a DFE with streams of different lengths.

W
Hint: You may find the method control.count.simpleCounter(int bit width) more
useful than the control.count.simpleCounter(int bit width, int max) method used
in the original example.
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Fig_Tutorial_AdderMappedRegister

c

+

a

b

Figure 31: Kernel graph for the adder, as created by the program in Listing 23
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Listing 24: Host code for the adder Kernel (AddScalarCpuCode.c).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 7 Example: 1 Name: Add scalar
4 ∗ MaxFile Name: AddScalar
5 ∗ Summary:
6 ∗ Example showing the use of scalar inputs.
7 ∗/
8 #include <stdlib.h>
9 #include <stdint.h>

10 #include <string.h>
11
12 #include ”Maxfiles.h”
13 #include <MaxSLiCInterface.h>
14
15 void generateData(int size, float ∗dataIn)
16 {
17 for ( int i = 0; i < size; i++)
18 dataIn[ i ] = i ;
19 }
20
21 void AddScalarCPU(int size, float scalarIn, float ∗dataIn, float ∗dataOut)
22 {
23 for ( int i = 0; i < size; i++)
24 dataOut[i] = dataIn[ i ] + scalarIn ;
25 }
26
27 int check(int size, float ∗dataOut, float ∗expected) {
28 int status = 0;
29 for ( int i = 0; i < size; i++)
30 if (dataOut[i] != expected[i ]) {
31 fprintf ( stderr , ”Output data @ %d = %f (expected %f)\n”,
32 i , dataOut[i ], expected[i ]) ;
33 status = 1;
34 }
35 return status;
36 }
37
38 int main()
39 {
40 const int size = 1024;
41 int sizeBytes = size ∗ sizeof(float ) ;
42 float ∗dataIn = malloc(sizeBytes);
43 float ∗dataOut = malloc(sizeBytes);
44 float ∗expected = malloc(sizeBytes);
45 float scalarIn = 5.0;
46
47 generateData(size, dataIn);
48
49 printf ( ”Setting scalar and running DFE.\n”);
50 AddScalar(size, scalarIn, dataIn, dataOut);
51
52 AddScalarCPU(size, scalarIn, dataIn, expected);
53
54 int status = check(size, dataOut, expected);
55 if (status)
56 printf ( ”Test failed .\n”) ;
57 else
58 printf ( ”Test passed OK!\n”);
59
60 return status;
61 }
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Navigating Streams of Data

A Stream is a steady succession of words or events.
– Webster Dictionary

In some of the earlier examples in this document, we have seen the use of stream.offset to
access values at different points in the data stream. The various forms of this method are key to making
efficient dataflow computing implementations and are the focus of this section.

8.1 Windows into streams

A core concept of dataflow computing is operating on windows into data streams. The data window is
held in on-chip memory on the dataflow engine, minimizing off-chip data transfers.

Stream offsetting allows us to access data elements within a stream relative to the current location.
The distance from the largest to the smallest offset forms the window of data that is held in the dataflow
engine. Figure 32 shows a data stream A over three ticks. In the first tick, the current data item (or
head of the stream) has a value of 23. A dataflow program accessing the head of the stream and also
a data item four elements into the past (with a value of 11 in tick 1 of Figure 32) creates a window of
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size five into stream A. On each tick, the data in the stream moves through the window. In contrast
to conventional software, stream offsetting makes the memory cost of accessing non-local elements
explicit and allows applications to be explicitly architected to minimize off-chip memory access.

37 31 29 23 19 17 13 11  7  5  3  2  1

A stream.offset(A, -4)

Window into stream

37 31 29 23 19 17 13 11  7  5  3  2  1

37 31 29 23 19 17 13 11  7  5  3  2  1

End of Stream Start of Stream

Tick 1:

Tick 2:

Tick 3:

Figure 32: Stream offsets form a window into a data stream

Any conventional software array operation can be expressed in terms of stream offsets. For ex-
ample, Figure 33 shows one way in which the collection of points for a 3x3 2-dimensional convolution
operator can be expressed in terms of offsets. The element A is the head of the stream, and the other
points are read from the past (negative) or the future (positive) of the stream. The dotted line shows the
order in which the data is streamed into the Kernel.

The total size of the window into the 8x8 data set in Figure 33 amounts to 19 data items (all the
items highlighted in gray or pink): 9 items from the past of the stream, 9 items from the future and one
for the current item. The total size of the window in a 2D offset like this depends on the width of the 2D
data set being streamed into the Kernel: the wider the data set, the larger the required window to buffer
the line data.
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Figure 33: Points for a 2D convolution expressed in terms of coordinates (left) and offsets (right)
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MaxCompiler supports three kinds of stream offsets that differ in how their size is specified:

• static offsets have a size fixed at compile-time

• variable offsets have their size set at run time before a stream is processed

• dynamic offsets have their sizes set at run time during stream processing

In this section, we will see how to use these different kinds of offsets and discuss how to decide
which type to use.

8.2 Static offsets

Listing 25 shows one of the more straight-forward uses of stream offsets: to retrieve values immediately
adjacent to the current value of the stream. Our example takes an input stream and sums every three
elements to create a new output stream.

W Note that the dataflow program in Listing 25 does not specifically handle boundary cases and,
therefore, the behavior of this Kernel at the beginning and end of the stream is undefined.

Positive stream offsets return values from the future of the stream; negative offsets return values
from the past of the stream. Future values are later rescheduled by the compiler.

Our example implies a window of size 3 into the input stream from the furthest positive point, +1, to
the furthest negative offset, -1:

24 DFEVar inPrev = stream.offset(inStream, -1);
25 DFEVar inNext = stream.offset(inStream, 1);
26
27 DFEVar result = inPrev + inStream + inNext;

The storage cost for the implementation of this Kernel in a dataflow engine is therefore 3 elements.
Luckily, a typical DFE has many MBs of on-chip data.

8.3 Variable stream offsets

Static offsets are simple and can be highly optimized by the compiler, however they are not very flexible.
If we want to change the length of an offset in a design, we need to recompile that bitstream, which is
quite inconvenient.

Consider, the more complicated example shown in Listing 26. This dataflow program describes a
Kernel implementing an averaging filter that averages 9 points in 2 dimensions. The input data set is of
size nx× ny and the data elements are streamed row-by-row. The position in the stream at offset 0 is
defined as the coordinate (x, y) and the filter collects values from (x− 1, y − 1) to (x+ 1, y + 1) in a
3× 3 grid.

In order to collect points in two dimensions the offset becomes a function of nx, the size of the
dimension x, as we can see from the following code:

23 // Extract 8 point window around current point
24 DFEVar window[] = new DFEVar[9];
25 int i = 0;
26 for ( int x=-1; x<=1; x++)
27 for ( int y=-1; y<=1; y++)
28 window[i++] = stream.offset(inStream, y∗nx+x);
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Listing 25: Simple example of using stream offsets (SimpleOffsetKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial)
3 ∗ Chapter: 8 Example: 1 Name: Simple offset
4 ∗ MaxFile name: SimpleOffset
5 ∗ Summary:
6 ∗ Kernel that applies an offset to a stream.
7 ∗/
8
9 package simpleoffset;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 class SimpleOffsetKernel extends Kernel {
16
17 SimpleOffsetKernel(KernelParameters parameters) {
18 super(parameters);
19
20 // Input
21 DFEVar inStream = io.input(”inStream”, dfeFloat(8, 24));
22
23 // Offsets and Calculation
24 DFEVar inPrev = stream.offset(inStream, -1);
25 DFEVar inNext = stream.offset(inStream, 1);
26
27 DFEVar result = inPrev + inStream + inNext;
28
29 // Output
30 io .output(”outStream”, result , dfeFloat(8, 24));
31 }
32
33 }

Now suppose we want to change the size of the 2D data set the dataflow engine is filtering: we can
change ny easily, since it is not used in the Kernel description at all, however if we change nx we need
to recompile.

A solution to this problem is shown in Listing 27. This performs the same operation as Listing 26,
but allows the value of nx to change at run time. The program declares a variable nx using the
stream.makeOffsetParam method:

24 OffsetExpr nx = stream.makeOffsetParam(”nx”, 3, nxMax);

This nx variable forms the basis of an offset expression to specify an offset size which can be
varied at run-time.

When nx is declared, it is specified with upper and lower bounds (in this case nxMax and 3
respectively). At run time, nx may only be varied within these bounds. Specifying reasonable ranges
for minimum and maximum values for stream offset expression parameters is very important, because
the compiler optimizes the dataflow engine to allocate storage as necessary for precisely that range.
Specifying very wide bounds can result in very high on-chip resource usage.
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Listing 26: A 2D 9-point averaging filter using static stream offsets (TwoDAverageStaticKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial)
3 ∗ Chapter: 8 Example: 2 Name: Two Dimensional Average Static
4 ∗ MaxFile name: TwoDAverageStatic
5 ∗ Summary:
6 ∗ Kernel that averages within an 8-point window.
7 ∗/
8
9 package twodaveragestatic;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 class TwoDAverageStaticKernel extends Kernel {
16
17 TwoDAverageStaticKernel(KernelParameters parameters, int nx) {
18 super(parameters);
19
20 // Input
21 DFEVar inStream = io.input(”inStream”, dfeFloat(8, 24));
22
23 // Extract 8 point window around current point
24 DFEVar window[] = new DFEVar[9];
25 int i = 0;
26 for ( int x=-1; x<=1; x++)
27 for ( int y=-1; y<=1; y++)
28 window[i++] = stream.offset(inStream, y∗nx+x);
29
30 // Sum points in window and divide by 9 to average
31 DFEVar sum = constant.var(dfeFloat(8, 24), 0);
32 for (DFEVar dfeVar : window) {
33 sum = sum + dfeVar;
34 }
35
36 DFEVar result = sum / 9;
37
38 // Output
39 io .output(”outStream”, result , dfeFloat(8, 24));
40 }
41
42 }

Simple linear algebra can be performed on the OffsetExpr objects:

27 DFEVar window[] = new DFEVar[9];
28 int i = 0;
29 for ( int x=-1; x<=1; x++)
30 for ( int y=-1; y<=1; y++)
31 window[i++] = stream.offset(inStream, y∗nx+x);

OffsetExpr variables can only have a limited number of operations performed on them, which
include: addition and subtraction of other OffsetExpr instances or Java compile-time constants, and
multiplication by Java compile-time constants.

W Offset expressions must be linear, i.e. of the form A+Bx+ Cy + . . ., where A, B and C are
constants and x and y are offset parameters.
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Listing 27: A 2D 9-point averaging filter using variable stream offsets (TwoDAverageVariableKer-
nel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 8 Example: 3 Name: Two-dimensional average variable
4 ∗ MaxFile name: TwoDAverageVariable
5 ∗ Summary:
6 ∗ Kernel that averages within an 8-point window.
7 ∗/
8
9 package twodaveragevariable;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Stream.OffsetExpr;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15
16 class TwoDAverageVariableKernel extends Kernel {
17
18 public TwoDAverageVariableKernel(KernelParameters parameters, int nxMax) {
19 super(parameters);
20
21 // Input
22 DFEVar inStream = io.input(”inStream”, dfeFloat(8, 24));
23
24 OffsetExpr nx = stream.makeOffsetParam(”nx”, 3, nxMax);
25
26 // Extract 8 point window around current point
27 DFEVar window[] = new DFEVar[9];
28 int i = 0;
29 for ( int x=-1; x<=1; x++)
30 for ( int y=-1; y<=1; y++)
31 window[i++] = stream.offset(inStream, y∗nx+x);
32
33 // Sum points in window and divide by 9 to average
34 DFEVar sum = constant.var(dfeFloat(8, 24), 0);
35 for (DFEVar dfeVar : window) {
36 sum = sum + dfeVar;
37 }
38
39 DFEVar result = sum / 9;
40
41 // Output
42 io .output(”outStream”, result , dfeFloat(8, 24));
43 }
44
45 }

The offset expression is automatically added as an argument to the SLiC function for running the
design. The excerpt below from the CPU code for this example shows the value of nx being set at run
time:

97 TwoDAverageVariable(NX∗NY, NX, dataIn, expectedOut);

8.3.1 3D convolution example using variable offsets

As only linear expressions are permitted, the approach to creating variable offsets into a 3D volume
using offset expressions of nx and ny and writing z*nx*ny+y*nx+x as the offset for z does not compile.
To create our 3D offsets, we need offset expressions of nx and nxy and use z*nxy+y*nx+x as the
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offset for z. nxy is then set to nx*ny by the CPU.
Example 4 extends the 2D moving average from Example 3 to demonstrate the creation of such

offsets in a 3D moving average function that can operate on a variable-sized volume. The full kernel is
shown in Listing 28.

We first create the two offset expressions, one for nx and one for nxy.

23 OffsetExpr nx = stream.makeOffsetParam(”nx”, 3, nxMax);
24 OffsetExpr nxy = stream.makeOffsetParam(”nxy”, 3 ∗ nx, nxMax ∗ nx);

These are then used to create the 27-point cube window into the input data stream:

27 DFEVar window[] = new DFEVar[27];
28 int i = 0;
29 for ( int x=-1; x<=1; x++)
30 for ( int y=-1; y<=1; y++)
31 for ( int z=-1; z<=1; z++)
32 window[i++] = stream.offset(inStream, z∗nxy+y∗nx+x);

8.4 Dynamic offsets

Variable offsets allow the value of an offset to be changed on a per-stream basis, however the offset is
fixed for the duration of a stream.

In some applications, it is necessary to change the value of an offset during a stream. One way
of achieving this is to use multiple offsets and a multiplexer (control.mux) to select between them.
A multiplexer is a generalized version of the ternary-if operator (?:) that allows us to select between
multiple streams. The first argument is the control stream that decides which stream to select. For
example:

DFEVar x = input(”x”, dfeInt (32)) ;
DFEVar offset = input(” offset ” , dfeUInt(2)) ;
DFEVar y = output(”y”, dfeInt (32)) ;
y <== control.mux(offset, stream.offset(x, 0), stream.offset(x, 1), stream.offset(x, 2), stream.offset(x, 3)) ;

In this example the offset is limited to a range of 0 to 3, and the multiplexer option is satisfactory.
However, if the possible range of offsets is larger, then this approach scales poorly in terms of space
on the DFE.

Dynamic offsets are offsets where the offset value is specified as an DFEVar input that can vary on
a tick-by-tick basis at run time. Listing 29 shows an example Kernel that uses two dynamic offsets to
extract two points from an input stream and interpolate between them to generate an output point.

Dynamic offsets are instantiated using the stream.offset method. This method is parameterized
with the stream to offset, the offset value, the minimum offset value and the maximum offset value
(determining the amount of memory needed):

stream.offset(KernelObject src, DFEVar offset, int min offset , int max offset)

In Listing 29 the two stream offsets both range from -maxTraceSize to maxTraceSize and are
offsets on the same input stream inStream. However the value of each offset on each tick differs
(lowerPointPos and upperPointPos):

31 DFEVar lowerPointPos = KernelMath.floor(moveByInUnits, dfeInt(16));
32 DFEVar upperPointPos = lowerPointPos + 1;
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36 DFEVar pointLower = stream.offset(inStream, lowerPointPos, -maxTraceSize, maxTraceSize);
37 DFEVar pointUpper = stream.offset(inStream, upperPointPos, -maxTraceSize, maxTraceSize);

In this example upperPointPos=lowerPointPos+1, and part of the power of dynamic offsets is
that the relationship can be entirely arbitrary, as long as it remains within the specified minimum and
maximum bounds.

Note that dynamic offsets create a new stream and not just an offset of the original stream. To
demonstrate this point we compare two ways of obtaining two points from the input stream. The first,
used in our example in Listing 29, uses two dynamic offsets to obtain two points, at addresses that
happen to be always one point apart:

31 DFEVar lowerPointPos = KernelMath.floor(moveByInUnits, dfeInt(16));
32 DFEVar upperPointPos = lowerPointPos + 1;

36 DFEVar pointLower = stream.offset(inStream, lowerPointPos, -maxTraceSize, maxTraceSize);
37 DFEVar pointUpper = stream.offset(inStream, upperPointPos, -maxTraceSize, maxTraceSize);

An alternative, but incorrect, approach might appear to be:

DFEVar pointLower = stream.offset(inStream, lowerPointPos, -maxTraceSize, maxTraceSize);
DFEVar pointUpper = stream.offset(pointLower, 1);

Here we attempt to use a single dynamic offset and a static offset to achieve the same result,
however the resulting data streams are not the same. A dynamic offset generates a new stream
consisting of a perturbation of the input stream. In the code above, the static offset is requesting an
offset into the new stream, not a further offset of 1 into the original stream.

There is no special run-time software code needed to use dynamic offsets, as the size of the offset
is just a stream like any other on the DFE. Since dynamic offsets are generally used when offsets
need to vary on a tick-by-tick basis, typically the offset value is either an input stream or computed
on the dataflow engine. It is also possible to connect the offset size stream to a scalar input for less
fine-grained control.

Generally it is good practice to minimize the use of dynamic offsets when static or variable offsets
can be used instead, since dynamic offsets are much more costly to implement in a DFE.

8.5 Comparing different types of offset

Each type of offset has a different resource cost, with static offsets being the cheapest and dynamic
offsets being the most expensive. This is shown in Table 3.

Table 3: Resource usage for three implementations of the same 9-point averaging filter with different
kinds of stream offset

LUTs FFs BRAM
Static offsets 11,076 13,749 28
Variable offsets 11,172 13,946 29
Dynamic offsets 12,341 14,662 71

94 Multiscale Dataflow Programming



8. Navigating Streams of Data

For example, consider the 2D 9-point averaging filter we saw in the previous section. Table 3 shows
the device resources required to implement this filter using the three different kinds of stream offsets.
In terms of LUTs and FFs, the three kinds of offsets are broadly similar, static offsets being the most
efficient and dynamic offsets the least efficient, however dynamic offsets use many more BRAMs than
the static or variable offsets.

The increased on-chip memory usage occurs because dynamic offsets are completely arbitrary in
size at run time, so the compiler cannot optimize them. With static and variable offsets, requesting
stream.offset(x, 1000) and stream.offset(x, 2000) requires approximately 2000 elements
of storage, because the 1000-element offset can be provided as a “tap” from the 2000-element off-
set. However, with dynamic offsets, the 1000 and 2000 values are not known at compile-time, so the
compiler is forced to allocate 3000 elements of storage.

Table 4 summarizes the different characteristics of the three types of stream offset.

Table 4: Characteristics of the different types of stream offset

Static Offsets Variable Offsets Dynamic Offsets
Size configurable At compile-time Before a stream tick-by-tick
On-chip resource cost Low Moderate High
Compiler optimizes Yes Yes No

8.6 Stream hold

A stream hold can be used to conditionally either output the current value of a stream or output a
previous value. A stream hold is created using Reductions.streamHold:

DFEVar Reductions.streamHold(DFEVar input, DFEVar store)
DFEVar Reductions.streamHold(DFEVar input, DFEVar store, Bits reset val)

The store stream is a Boolean stream that determines whether the current or stored value should
be output. The store behavior can be summarized as:

• When store is 1, the stream hold stores the current value from the input stream.

• When store is 0, the stream hold ignores the current value from the input stream.

And the output behavior as:

• When store is 1, the stream hold outputs the current value from the input stream.

• When store is 0, the stream hold outputs the currently stored value.

The output of a stream hold is 0 when the Kernel is reset, or reset val in the case of the second
version of the method.
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Listing 28: A 27-point averaging filter using variable stream offsets (ThreeDAverageVariableKer-
nel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 8 Example: 4 Name: Three-dimensional average variable
4 ∗ MaxFile name: ThreeDAverageVariable
5 ∗ Summary:
6 ∗ Kernel that averages across three dimensions within an 26-point window.
7 ∗/
8 package threedaveragevariable;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Stream.OffsetExpr;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 class ThreeDAverageVariableKernel extends Kernel {
16
17 ThreeDAverageVariableKernel(KernelParameters parameters, int nxMax) {
18 super(parameters);
19
20 // Input
21 DFEVar inStream = io.input(”inStream”, dfeFloat(8, 24));
22
23 OffsetExpr nx = stream.makeOffsetParam(”nx”, 3, nxMax);
24 OffsetExpr nxy = stream.makeOffsetParam(”nxy”, 3 ∗ nx, nxMax ∗ nx);
25
26 // Extract 8 point window around current point
27 DFEVar window[] = new DFEVar[27];
28 int i = 0;
29 for ( int x=-1; x<=1; x++)
30 for ( int y=-1; y<=1; y++)
31 for ( int z=-1; z<=1; z++)
32 window[i++] = stream.offset(inStream, z∗nxy+y∗nx+x);
33
34 // Sum points in window and divide by 27 to average
35 DFEVar sum = constant.var(dfeFloat(8, 24), 0);
36 for (DFEVar dfeVar : window) {
37 sum = sum + dfeVar;
38 }
39
40 DFEVar result = sum / window.length;
41
42 // Output
43 io .output(”outStream”, result , dfeFloat(8, 24));
44 }
45
46 }
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Listing 29: Part of a simple Normal Move-Out application using dynamic offsets (NormalMoveOutKer-
nel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 8 Example: 6 Name: Normal move-out
4 ∗ MaxFile name: NormalMoveOut
5 ∗ Summary:
6 ∗ A kernel for a simple Normal Move-Out application using dynamic offsets
7 ∗/
8 package normalmoveout;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.KernelMath;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 class NormalMoveOutKernel extends Kernel {
16
17 NormalMoveOutKernel(KernelParameters parameters, int maxTraceSize) {
18 super(parameters);
19
20 // Inputs
21 DFEVar inStream = io.input(”inStream”, dfeFloat(8,24));
22 DFEVar moveByInTime = io.input(”moveByInTime”, dfeFloat(8, 24));
23 DFEVar timeUnit = io.scalarInput(”timeUnit” , dfeFloat(8,24)) ;
24
25 // Calculate position of two points to extract from input stream
26 DFEVar moveByInUnits = moveByInTime/timeUnit;
27
28 // Convert to an integer , rounding down using a ’floor ’ function
29 // which also converts the type from floating -point to a 16-bit integer
30
31 DFEVar lowerPointPos = KernelMath.floor(moveByInUnits, dfeInt(16));
32 DFEVar upperPointPos = lowerPointPos + 1;
33 DFEVar interp = moveByInUnits - lowerPointPos.cast(dfeFloat(8,24));
34
35 // Extract points from input stream
36 DFEVar pointLower = stream.offset(inStream, lowerPointPos, -maxTraceSize, maxTraceSize);
37 DFEVar pointUpper = stream.offset(inStream, upperPointPos, -maxTraceSize, maxTraceSize);
38
39 // Interpolate between points to create output
40 DFEVar result = interp ∗ pointLower + (1-interp ) ∗ pointUpper;
41
42 // Output
43 io .output(”outStream”, result , dfeFloat(8, 24));
44 }
45 }
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Listing 30: Kernel demonstrating us of a stream hold (StreamHoldKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial)
3 ∗ Chapter: 8 Example: 7 Name: Stream Hold
4 ∗ MaxFile name: StreamHold
5 ∗ Summary:
6 ∗ Kernel that uses a stream hold to keep the maximum
7 ∗ value from a stream.
8 ∗/
9

10 package streamhold;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.Reductions;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
16
17 class StreamHoldKernel extends Kernel {
18
19 StreamHoldKernel(KernelParameters parameters, int counterWidth) {
20 super(parameters);
21
22 // Input
23 DFEVar inStream = io.input(”inStream”, dfeUInt(32));
24 DFEVar holdCount = io.scalarInput(”holdCount”, dfeUInt(counterWidth));
25
26 // Offsets and Calculation
27 DFEVar count = control.count.simpleCounter(counterWidth);
28 DFEVar result = Reductions.streamHold(inStream, count < holdCount);
29
30 // Output
31 io .output(”outStream”, result , dfeUInt(32)) ;
32 }
33 }

The following table shows example input and output over 11 Kernel ticks:

input 0 1 2 3 4 5 4 3 2 1 4
store 0 1 1 1 0 1 0 0 1 0 0
output 0 1 2 3 3 5 5 5 2 2 2

8.6.1 Stream hold example

Example 7 demonstrates simple use of a stream hold. The Kernel is shown in Listing 30.
The inputs to the Kernel are a stream of unsigned integer values and a scalar input:

23 DFEVar inStream = io.input(”inStream”, dfeUInt(32));
24 DFEVar holdCount = io.scalarInput(”holdCount”, dfeUInt(counterWidth));

A counter, continually loops around its range, and is compared with the scalar input to control the
stream hold:

27 DFEVar count = control.count.simpleCounter(counterWidth);
28 DFEVar result = Reductions.streamHold(inStream, count < holdCount);
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Exercises
Exercise 1: Static offsets

Create a Kernel design that uses stream offsets to implement the equivalent of the following code:

float inStream[simlen];
float outStream[simlen];
...
for ( int i = 3; i < simlen-3; i++) {

outStream[i] = (inStream[i -3]- inStream[i+3])∗(1.0/16)
+ (inStream[i -2]- inStream[i+2])∗(1.0/8)
+ (inStream[i -1]- inStream[i+1])∗(1.0/4)
+ inStream[i ]∗(1.0/2) ;

}

Tests for your implementation on DFEs and in simulation are provided.

Exercise 2: Variable offsets

Take the convolution Kernel you developed in Example 1 (or use the solution to Example 1 provided)
and, assuming that the input stream is a two-dimensional array of size n × n, transpose the operation
so that it is executed in the y dimension. This can be expressed in C as follows:

float inStream[n∗n];
float outStream[n∗n];
...
for ( int y = 3; y < n−3; y++) {

for ( int x = 3; x < n−3; x++) {
outStream[y∗n+x] = (inStream[(y−3)∗n+x]−inStream[(y+3)∗n+x])∗(1.0/16)

+ (inStream[(y−2)∗n+x]−inStream[(y+2)∗n+x])∗(1.0/8)
+ (inStream[(y−1)∗n+x]−inStream[(y+1)∗n+x])∗(1.0/4)
+ inStream[y∗n+x]∗(1.0/2);

}
}

Use a stream offset expression to allow n to be varied between 5 and 1024 without recompilation.
You can ignore boundary cases. Make the four coefficient values scalar inputs, so that they can also be
varied without recompilation.

W Remember to edit the CPU code to set your runtime parameters and scalar inputs.
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The wheels on the bus go round and round.
– unknown

In this section we introduce counters, which are the dataflow equivalents of loops in sequential
programs. Counters allow Kernel designs to keep track of where they are in the stream and keep track
of various levels of streaming and iteration.

9.1 Simple counters

A simple counter is instantiated using the method simpleCounter from control.count, which takes
the bit width for the counter as an argument:

DFEVar control.count.simpleCounter(int bit width)

The counter generates a stream of values of unsigned integer type of the specified bit width, starting
with the initial value 0 for the first incoming stream element and incrementing the value by one for each
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subsequent stream element. Upon reaching a value of 2w − 1 (where w is the bit width of the counter),
the counter wraps around and starts again at 0.

There is also a second version of the simpleCounter method which takes the maximum value as
its second parameter. This version of a counter wraps when it hits one less than this value.

DFEVar control.count.simpleCounter(int bit width, DFEVar wrap point)

Listing 31 shows a Kernel program using a simple counter to add a count to an incoming stream.
We create a simple counter to count from 0 through to the maximum value that can be held in an

unsigned integer variable of width width:

25 DFEVar count = control.count.simpleCounter(width);

Listing 31: Program for the simple counter Kernel (SimpleCounterKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 9 Example: 1 Name: Simple Counter
4 ∗ MaxFile name: SimpleCounter
5 ∗ Summary:
6 ∗ Kernel that shows how to create a simple counter and add
7 ∗ its count to the input stream.
8 ∗/
9

10 package simplecounter;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15
16 class SimpleCounterKernel extends Kernel {
17
18 SimpleCounterKernel(KernelParameters parameters, int width) {
19 super(parameters);
20
21 // Input
22 DFEVar x = io.input(”x” , dfeUInt(32)) ;
23
24 // Create a simple counter and add its count to the input
25 DFEVar count = control.count.simpleCounter(width);
26
27 DFEVar result = x + count;
28
29 // Output
30 io .output(”y” , result , dfeUInt(width)) ;
31 }
32
33 }

Figure 34 displays the corresponding Kernel graph. Visually, counters are represented by hexagons
(7) in Kernel graphs.
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cnt

y

+

x

Figure 34: Graph for the simple counter Kernel, as constructed by the program in Listing 31

9.2 Nested loops

A common idiom in conventional programming languages is nested loops. For example, if we were
working with a two-dimensional array, we might want to generate indices for each dimension. Consider
the following Java code:

for ( int i = 0; i < 6; i += 2) {
for ( int j = 0; j < 2; ++j) {

System.out.println( ” i = ” + i + ” , j = ” + j ) ;
}

}

which generates the following output:

i = 0, j = 0
i = 0, j = 1
i = 2, j = 0
i = 2, j = 1
i = 4, j = 0
i = 4, j = 1

In the dataflow programming model, we use chains of counters to implement nested loops. A
chained counter is created by calling the control.count.makeCounterChain method which returns
a CounterChain object:

CounterChain control.count.makeCounterChain()

Calling the addCounter(max, inc) method on this new object creates a counter variable which
produces output as if it were within the following for loop:

for ( int n = 0; n < max; n += inc)

In Listing 32, we create a pair of counters i and j which count in the same way as the nested for

loops above:

26 CounterChain chain = control.count.makeCounterChain();
27 DFEVar i = chain.addCounter(maxI, 2);
28 DFEVar j = chain.addCounter(maxJ, 1);
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Listing 32: A 2D counter Kernel using a counter chain (Simple2DCounterKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 9 Example: 2 Name: Simple two-dimensional counter
4 ∗ MaxFile Name: Simple2DCounter
5 ∗ Summary:
6 ∗ Kernel that constructs a chained counter and outputs its
7 ∗ values every cycle.
8 ∗/
9

10 package simple2dcounter;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
16
17 class Simple2DCounterKernel extends Kernel {
18
19 Simple2DCounterKernel(KernelParameters parameters, int maxI, int maxJ) {
20 super(parameters);
21
22 // Inputs
23 DFEVar passThrough = io.input(”input”, dfeUInt(32));
24
25 // Create Counters
26 CounterChain chain = control.count.makeCounterChain();
27 DFEVar i = chain.addCounter(maxI, 2);
28 DFEVar j = chain.addCounter(maxJ, 1);
29
30 i = i .cast(dfeUInt(32)) ;
31 j = j .cast(dfeUInt(32)) ;
32
33 // Outputs
34 io .output(” i ” , i , i .getType());
35 io .output(” j ” , j , j .getType());
36 io .output(”output” , passThrough, passThrough.getType());
37 }
38 }

9.3 Advanced counters

As a general control mechanism, a simpleCounter or CounterChain may not be flexible enough. It is
possible to create more complex counting behavior by specifying several characteristics of the counter:

bit width Counters generate a DFEUInt with the specified bit width. The bit width may be set to any
non-zero unsigned integer.

initial value By default a counter’s initial value is 0. The initial value parameter sets an arbitrary
starting point for counting.

increment The increment defaults to 1, and can be set to an arbitrary value via the increment param-
eter. The increment parameter is combined with the count based on the ‘count mode’ below.

count mode There are three modes of counting:

• NUMERIC INCREMENTING — add an increment to the count on each enabled Kernel tick

• SHIFT LEFT — logically shift left the count on each enabled Kernel tick
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• SHIFT RIGHT — logically shift right the count on each enabled Kernel tick

The remainder of this document refers only to NUMERIC INCREMENTING counters, which is also
the default counting mode.

maximum value By default, the maximum value of a counter is 2w − 1, where w is the bit width of the
counter. The maximum may also be set explicitly, in which case it must be an integer greater than
0 which can be represented in w bits.

Additionally, it is possible to set the maximum value of the counter dynamically from another
stream.

wrap mode What happens to a counter when it reaches its maximum is specified by the counter’s wrap
mode. There are three wrap modes:

• COUNT LT MAX THEN WRAP — The counter counts up to and including max-1, then restarts
counting from 0. For example, if the maximum is 5 and the increment is 1, the counter’s
values are:

0, 1, 2, 3, 4, 0, 1, 2, . . .

For a maximum value of 5 and an increment of 2 the values are:

0, 2, 4, 0, 2, 4, . . .

• STOP AT MAX — The counter stops at the greatest multiple of the increment not exceeding
maximum value until the Kernel is reset. This value is less than the maximum if the maxi-
mum is not a multiple of the increment. For example, if the maximum is 5 and the increment
is 2 then the values are:

0, 2, 4, 4, 4, 4, . . .

• MODULO MAX OF COUNT — The counter’s value is calculated modulo the maximum value.
For example, if the maximum is 5 and the increment is 2 then the count is:

0, 2, 4, 1, 3, 0, 2, 4, . . .

The default wrap mode is COUNT LT MAX THEN WRAP.

Whether or not a counter has wrapped can be found by getting the counter’s wrap signal. This is
a Boolean state variable which is 1 during the last tick before wrapping. The wrap signal is often
used when combining several counters together and is also useful as an input for watch nodes.

wrap value When a counter wraps, its next value is specified by the wrap value. By default this is 0.

enable The enable signal for a counter is a Boolean (one bit wide) DFEVar. For every tick where the
enable is equal to 1, the counter counts and otherwise stays at the current value.

9.3.1 Creating an advanced counter

The parameters that specify an advanced counter’s behavior are encapsulated in a Count.Params

object which is returned by the count.makeParams method:

Count.Params control.count.makeParams(int bit width)

Multiscale Dataflow Programming 105



9.3 Advanced counters

The counter’s parameters can then be customized by calling the various with methods that are de-
fined on Count.Params (e.g. withInc, withMax, etc.). These methods return a new Count.Params

object that can again be customized by subsequent calls to with methods.

W Note that Count.Params objects are immutable, so calling a with method does not modify the
existing object.

Once we have a suitable Count.Params object we can create a counter with the specified behavior
by calling the count.makeCounter method, using the Count.Params object as the only argument.
This returns a Counter object:

Counter control.count.makeCounter(Count.Params params)

Once we have a Counter object we can get the counter’s value from the getCount method and
the ‘wrap’ signal by calling getWrap.

DFEVar getCount()
DFEVar getWrap()

Listing 33 shows a Kernel design that creates an advanced counter. The corresponding Kernel
graph is shown in Figure 35.

We first make a Count.Params object with the specified bit width, maximum and increment:

31 Count.Params paramsOne = control.count.makeParams(width)
32 .withMax(countOneMax)
33 .withInc(countOneInc);

We use this Count.Params object to create our actual counter:

35 Counter counterOne = control.count.makeCounter(paramsOne);

We then create a second counter with the wrap signal of the first counter as its enable signal:

37 Count.Params paramsTwo = control.count.makeParams(width)
38 .withEnable(counterOne.getWrap())
39 .withMax(countTwoMax)
40 .withWrapMode(WrapMode.STOP AT MAX);
41
42 Counter counterTwo = control.count.makeCounter(paramsTwo);

If we set count1Max to 3 and count2Max to 2, the two counters count as follows:
ct1 = 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, ...

ct2 = 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, ...
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Listing 33: A complex counter arrangement with a stopping counter (ComplexCounterKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf))>
3 ∗ Chapter: 9 Example: 3 Name: Complex Counter
4 ∗ MaxFile name: ComplexCounter
5 ∗ Summary:
6 ∗ Kernel design that creates advanced counters specifying
7 ∗ maximum value, increment, wrap mode and enable streams.
8 ∗/
9

10 package complexcounter;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Count;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Count.Counter;
16 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Count.WrapMode;
17 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
18
19 class ComplexCounterKernel extends Kernel {
20
21 private static final int width = 32;
22
23 ComplexCounterKernel(KernelParameters parameters,
24 int countOneMax, int countOneInc, int countTwoMax) {
25 super(parameters);
26
27 // Input
28 DFEVar streamIn = io.input(”input”, dfeUInt(width)) ;
29
30 // Counters and calculation
31 Count.Params paramsOne = control.count.makeParams(width)
32 .withMax(countOneMax)
33 .withInc(countOneInc);
34
35 Counter counterOne = control.count.makeCounter(paramsOne);
36
37 Count.Params paramsTwo = control.count.makeParams(width)
38 .withEnable(counterOne.getWrap())
39 .withMax(countTwoMax)
40 .withWrapMode(WrapMode.STOP AT MAX);
41
42 Counter counterTwo = control.count.makeCounter(paramsTwo);
43
44 DFEVar countTwo = counterTwo.getCount();
45 DFEVar countOne = counterOne.getCount();
46
47 DFEVar result = streamIn + countTwo;
48
49 // Output
50 io .output(” result ” , result , dfeUInt(width)) ;
51 io .output(”countOne”, countOne, countOne.getType());
52 io .output(”countTwo”, countTwo, countTwo.getType());
53 }
54 }
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Figure 35: Advanced counter example Kernel graph
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Exercises
Exercise 1: Simple counter

Create a Kernel design that instantiates a simple counter. Derive from it a count that goes from 15
down to zero, before wrapping from 15. Add this result to input stream x to produce output stream y.
The CPU code is provided to test your implementation.

W Hint: you can use an algebraic expression of the output of a counter that goes from 0 up to 15.

Exercise 2: 2D counter

Make a 2D counter with the maximum values taken from scalar inputs. Set the scalar input for the fast
dimension to 4 and for the slow dimension to 3. Test that the output of both counters is as expected.
MaxCompiler requires that all Kernels have at least one input and one output: as the core has no input,
add a dummy input that is connected directly to a dummy output. The number of dummy data values
sent to this core determines the number of values. Send in enough dummy data such that the counter
in the slow dimension wraps.

Exercise 3: Advanced counter

This exercise revisits the 2D averaging filter with variable offsets from section 8. Adapt this example
using a 2D counter to keep track of the edges of each 2D array as it is streamed through the core. Apply
boundary conditions to the edges, such that points that lie outside the 2D array do not contribute to the
average. The average should be calculated based on the number of valid points, not simply divided by
9 as before. CPU code is provided to stream in three consecutive 9x9 input arrays and verify that the
output is as expected.
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10
Advanced SLiC Interface

In section 2, we covered the Basic Static SLiC interface; in this section, we look at the Advanced Static
and Advanced Dynamic SLiC interfaces. We then look in more detail at SLiC engine interfaces, looking
this time at how they are defined in the MaxCompiler source. We also see how to run dataflow engines
asynchronously using non-blocking functions, and cover the details of error handling, event monitoring
and SLiC configuration. Finally we show how to use sliccompile to expose SLiC interfaces to scripting
languages.

To recap, the SLiC functions are split into three levels of increasing complexity and flexibility:

Basic Static allows a single function call to run the design on a single DFE using only static actions
defined via a given function call interface.

Advanced Static allows control of loading of DFEs, setting multiple complex actions, and optimization
of CPU and DFE collaboration.

Advanced Dynamic allows for the full scope of dataflow optimizations and fine-grain control of alloca-
tion and de-allocation of all dataflow resources.

10.1 The lifetime of a .max file

The life-cycle of a .max file within a CPU application is as follows:
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initialize - the .max file is initialized and functions become available.

load - the .max file is loaded onto a DFE. The DFE is now exclusively owned by the calling CPU
process.

W Loading the .max file takes in the order of 100ms to 1s.

execute actions - the CPU calls SLiC functions to execute actions on the DFE.

W A loaded .max file has to be utilized for long enough to justify having waited up to a
second to load the configuration.

unload - the DFE is released by the CPU process and returns to the pool of DFEs managed by Max-
elerOS.

free - the .max file is deallocated.

The Basic Static SLiC interface loads the .max file onto the DFE when the first SLiC function is
called, and releases the DFE when the CPU process terminates. The Advanced Static SLiC interface
allows you to control exactly when the DFE is loaded and unloaded.

10.2 Advanced Static

With the Advanced Static SLiC interface, the .max file must first be initialized using a method specific
to the .max file. For our moving average example, this is:

max file t∗ MovingAverage init();

The .max file then gets loaded onto a DFE using max load:

max engine t∗ max load(max file t ∗max file, const char ∗engine id pattern);

engine id pattern is a string that indicates which engines to use. This takes the form

hostname[:engine_id],

with engine id either a number identifying a specific engine, or * for any engine. hostname can
be one of:

• The host name of an MPC-X node for remote engines

• "local" - for using local engines

• "*" - the host name is taken from the configuration variable "default engine resource"
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The return value from max load is a handle for a DFE on which actions can be executed.

W The pattern format for arrays and groups of DFEs is different (see subsection 10.4 and subsec-
tion 10.5).

10.2.1 Executing actions on DFEs

Actions are executed on a DFE using a structure containing the parameters for the action. This structure
is specific to the .max file and engine interface. For example, for our moving average example, the
default structure is:

typedef struct {
int param N;
const float ∗instream x;
float ∗outstream y;

} MovingAverage actions t;

The populated action structure can be executed on the loaded DFE using the MovingAverage run

function:

void MovingAverage run(
max engine t ∗engine,
MovingAverage actions t ∗interface actions);

This function returns when the action is complete and the output data is available to the CPU code.
Finally, once it is no longer needed, the DFE can be unloaded:

void max unload(max engine t ∗engine);

10.2.2 Holding the state of the DFE

The DFE can be loaded and unloaded multiple times during the execution of the CPU application to
release the DFE for use by other applications or to load an alternative .max file.

The state of the DFE is maintained between load and unloading. Once the DFE has been unloaded,
there is no guarantee that the state, including the contents of the LMem, is maintained.

Let us examine an Advanced Static example. The CPU code below shows the moving average
CPU code required to run the .max file using the Advanced Static SLiC interface:

max file t ∗mavMaxFile = MovingAverage init();
max engine t ∗mavDFE = max load(mavMaxFile, ”local:∗”);

MovingAverage actions t actions;
actions.param N = size;
actions.instream x = dataIn;
actions.outstream y = dataOut;

MovingAverage run(mavDFE, &actions);

max unload(mavDFE);
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10.3 Using multiple .max files

Using the Advanced Static SLiC interface, two .max files can be loaded onto multiple DFEs or loaded
sequentially on one DFE. This is achieved by including the header files for each .max file and calling
the appropriate functions for each file.

For example, imagine that we have our moving average .max file and another .max file called
Threshold.max that thresholds its input stream. Using the Advanced Static SLiC interface, we can
run the moving average, then reload the DFE with the thresholding .max file. passing the output of the
moving average as the input:

#include ”MovingAverage.h”
#include ”Threshold.h”
#include <MaxSLiCInterface.h>

...
max file t ∗mavMaxFile = MovingAverage init();
max engine t ∗myDFE = max load(mavMaxFile, ”∗”);

MovingAverage actions t mavAction;
mavAction.param N = size;
mavAction.instream x = dataIn;
mavAction.outstream y = mavOut;

MovingAverage run(myDFE, &mavAction);

max file t ∗threshMaxFile = Threshold init() ;
max unload(myDFE);

myDFE = max load(threshMaxFile, ”∗”);
Threshold actions t threshAction;
threshAction.param N = size;
threshAction.instream x = mavOut;
threshAction.outstream y = dataOut;

Threshold run(myDFE, &threshAction);

max unload(myDFE);

10.4 Running .max files on multiple DFEs

A .max file can be run on multiple connected, adjacent DFEs with one command, using an array
of actions in the Advanced Static and Advanced Dynamic SLiC interfaces. There are SLiC functions
specific to the .max file with the array suffix for running such an array, for example:

void MovingAverage run array(max engarray t ∗engarray, MovingAverage actions t ∗interface actions[]);

There are also load and unload functions for arrays:

max engarray t∗ max load array(max file t ∗maxfile, int number of engines, const char ∗engine id pattern);

void max unload array(max engarray t ∗engarray);

The engine id pattern argument for arrays is one of:

• The host name of an MPC-X node when using remote engines

• "local" - use local engines;

• "*" - the host name is taken from the configuration variable "default engine resource".
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The array of actions is specified as a C array of pointers to action structures, as shown in the
following example, which runs our moving average .max file on two DFEs:

const int numEngines = 2;
MovingAverage actions t ∗actions[numEngines];

for ( int i = 0; i < numEngines; i++) {
actions[ i ] = malloc(sizeof(MovingAverage actions t));
actions[ i ]−>param N = size;
actions[ i ]−>instream x = dataIn[i];
actions[ i ]−>outstream y = dataOut[i];

}

max file t ∗maxfile = MovingAverage init();
max engarray t ∗engines = max load array(maxfile, numEngines, ”∗”);
Maxring run array(engines, actions);

max unload array(engines);
max file free (maxfile) ;

The DFEs in an array may communicate with each other via MaxRing connections. MaxRing is
covered in more detail in section 13.

10.5 Sharing DFEs

Engine groups are multiple DFEs loaded with the same .max file, shared between threads, processes
and users. Engine groups can optionally gain or lose real engines over time: this is managed by
MaxelerOS at runtime.

An engine group is created using max load group:

max group t∗ max load group(
max file t ∗max file,
max sharing mode t sharing mode,
const char ∗group id,
int group size);

sharing mode specifies how to share the DFEs and must be one of:

• MAXOS EXCLUSIVE indicates that no other process can use an engine that belongs to the group:
this is also the behavior when not using groups.

• MAXOS SHARED is used for fine-grained sharing between processes, where no .max file loading
takes place except on creating the group.

• MAXOS SHARED DYNAMIC allows the system to re-size the group and load/unload engines without
explicit instruction from the user.

Table 5 summarizes the sharing and group size behavior for each of the sharing modes.
group id is of the form grouptag [@ hostname], where hostname is one of:

• The host name of an MPC-X node when using remote engines

• "local" - use local engines

• "*" - the host name is taken from the configuration variable "default engine resource"

In cases where @ is absent, the entire string is used as the group tag. group size is the required
number of DFEs in the group, or the initial number for a DYNAMIC group.
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Sharing mode Share engines between processes1 Group size changed by user or system

MAXOS EXCLUSIVE no no
MAXOS SHARED yes2 no
MAXOS SHARED DYNAMIC yes2 yes

1 Engines can always be shared between threads in the same process.
2 Only processes with the same group ID can share engines in a group.

Table 5: Group properties.

10.5.1 Running actions on a DFE in a group

For individual engines and arrays, once they are loaded they are also locked for exclusive use, whereas
with groups an additional lock step is required. An available DFE from the group is locked for use by
calling max lock any:

max engine t∗ max lock any(max group t ∗group);

This function returns as soon as an engine becomes available. Once an engine has been locked,
actions are executed on it using the SLiC functions specific to the .max file.

The max unlock function releases the DFE back to the group:

void max unlock(max engine t ∗engine);

Finally, the group can be unloaded when it is no longer required using max unload group:

void max unload group(max group t ∗group);

We can take our moving average as an example again. This time, we load the .max file to a group
and run it on a DFE from the group:

max file t ∗mavMaxFile = MovingAverage init();

max group t ∗mavGroup = max load group(mavMaxFile, MAXOS EXCLUSIVE, ”mavGroup@local:∗”, 2);

MovingAverage actions t actions;
actions.param N = size;
actions.instream x = dataIn;
actions.outstream y = dataOut;

max engine t ∗mavDFE = max lock any(mavGroup);

MovingAverage run(mavDFE, &actions);
max unlock(mavDFE);

max unload group(mavGroup);

If you only need to execute a single action on an engine, it is possible to use a high-performance
atomic execution directly on the engine group. This will queue and execute the actions on any engine in
the group then return. This type of interface is particularly useful when large numbers of CPU threads
are submitting many small jobs on many engines. To use, use the auto-generated function:

MovingAverage run group(max group t ∗group, MovingAverage actions t ∗interface actions);

This replaces the uses of max lock any, MovingAverage run and max unlock in the previous
example.
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Property On max load At other times
MAXOS EXCLUSIVE Always, unless there is already

a free engine with the same
.max file loaded

Never

MAXOS SHARED Always, unless there is already
a free engine with the same
.max file loaded, which may
have been loaded by another
process 1

Never
MAXOS SHARED DYNAMIC If the user software requests to

resize the group, or the system
resizes the group based on de-
mand

1 Other processes can lock the engine after it has been loaded in one process.

Table 6: Engine loading behavior for different group properties.

10.5.2 Engine loads

MaxelerOS manages the loading of the .max file onto a DFE when required. When the .max file is
loaded depends on the sharing mode and is detailed in Table 6.

10.6 Advanced Dynamic

The Advanced Dynamic SLiC interface offers all of functionality of the Advanced Static, but using strings
to specify the parameters to functions to use a .max file, rather than static functions and structures
defined in the .max file. This allows Advanced Dynamic CPU code to be decoupled from a particular
.max file.

.max file initialization, engine loading and engine loading are performed in the same way as the
Advanced Static (see subsection 10.2).

Actions are defined using a max actions t structure, which is initialized using max actions init:

max actions t ∗max actions init( max file t ∗max file, const char ∗interface);

The max file argument is a pointer to the initialized .max file handle and interface is the engine
interface to use. Using NULL as the interface argument specifies that no engine interface is to be
used.

A function API is used to configure the actions max actions t structure.

10.6.1 Setting engine interface parameters

Engine interface parameters can be set using max set param uint64t for integer values, or
max set param double for floating-point values:

void max set param uint64t(max actions t∗ actions, const char ∗ const name, uint64 t value);
void max set param double(max actions t∗ actions, const char ∗ const name, double value);

The name argument is the string name for the engine interface parameter as defined in the Manager.
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Likewise, there are functions for setting each element for arrays of engine interface parameters,
max set param array uint64t and max set param array double:

void max set param array uint64t(max actions t ∗actions, const char ∗ const name, uint64 t value, int idx) ;
void max set param array double(max actions t ∗actions, const char ∗ const name, double value, int idx);

Calling the functions to set engine interface parameters when the max actions t has been initial-
ized without an engine interface (i.e. set to NULL) is invalid and raises an error:

SLiC Error #517 @ actions_interfaces_internal.c:39 - Interface parameter "N"

cannot be set for engine interface "(null)"

SLiC Error #518 @ actions.c:77 - Error reported from function "

max_set_param_uint64t".

10.6.2 Streaming data

Data is added to input and output streams for an action set using max queue input and
max queue output:

void max queue input(max actions t ∗actions, const char ∗stream name, const void ∗data, size t bytes);
void max queue output(max actions t ∗actions, const char ∗stream name, const void ∗data, size t bytes);

The bytes argument is the number of bytes of input data or the size of the memory allocated for
the output data.

One advantage of the max queue interface is that it can be called multiple times as part of a single
actions object to queue multiple data transfers back-to-back. This can be used to ”gather“ data from
memory into the DFE, ”scatter“ results into CPU memory, or to stream the same input data multiple
times (by passing the same input pointer). Passing the same data pointer multiple times to an output
stream leads to only the last values written to the memory being available.

10.6.3 Freeing the action set

When an action set is no longer needed, the memory can be released using max actions free:

void max actions free(max actions t ∗actions);

W Failing to free an action set when it is no longer needed can lead to memory leaks.

10.6.4 Advanced Dynamic example

The code below shows the moving average example again, this time using the Advanced Dynamic SLiC
interface:

max file t ∗mavMaxFile = MovingAverageSimple init();
max engine t ∗mavDFE = max load(mavMaxFile, ”local:∗”);

max actions t ∗actions = max actions init (mavMaxFile, ”default”);
max set param uint64t(actions, ”N”, size) ;
max queue input(actions, ”x”, dataIn, sizeBytes);
max queue output(actions, ”y”, dataOut, sizeBytes);
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max run(mavDFE, actions);

max actions free(actions);

max unload(mavDFE);

10.6.5 Setting and retrieving Kernel settings

The number of Kernel ticks for a Kernel to run for is set using max set ticks with the name of the
Kernel:

void max set ticks(max actions t ∗actions, const char ∗kernel name, uint64 t nb ticks);

Stream offsets are set using max set offset with the name of the Kernel and the name of the
offset:

void max set offset(max actions t∗actions, const char∗kernel name, const char∗offset var name, int v);

Stream distance measurements and autoloop sizes (see Acceleration Tutorial - Loops and Pipelin-
ing) can be retrieved from a Kernel:

int max get stream distance(max actions t ∗actions, const char ∗kernel name, const char ∗offset var name);
int max get offset auto loop size(max actions t ∗actions, const char ∗kernel name, const char ∗offset var name);

10.6.6 Setting and reading mapped memories

Elements of mapped memories on a Manager block or Kernel are set individually using
max set mem uint64t or max set mem double, depending on the type contained in the memory:

void max set mem uint64t(max actions t ∗actions, const char ∗block name, const char ∗mem name, size t index, uint64 t v);
void max set mem double(max actions t ∗actions, const char ∗block name, const char ∗mem name, size t index, double v);

Validation checks whether all of the elements in a mapped memory have been set.
Likewise, pointers for reading back each mapped memory element are set using

max get mem uint64t or max get mem double:

void max get mem uint64t(max actions t ∗actions, const char ∗block name, const char ∗mem name, size t index, uint64 t ∗v);
void max get mem double(max actions t ∗actions, const char ∗block name, const char ∗mem name, size t index, double ∗v);

10.6.7 Action validation

The Advanced Dynamic SLiC interface provides automatic checking of actions before they are run on
a DFE, ensuring that all the required parameters have been set correctly.

If we were to make a mistake in the CPU code for our moving average example, perhaps forgetting
to set the size engine interface parameter for the default engine interface, the validation of the actions
when they are run on the engine would raise an error:

Tue 17:10: SLiC Error #517 @ actions_interfaces_internal.c:182 - Interface

parameter "N" not defined for engine interface "default"

Tue 17:10: SLiC Error #518 @ maxfile_setup.c:486 - Error reported from

function "max_actions_get_param_uint64t".

Tue 17:10: Aborted
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There are functions in the API to tell SLiC to ignore specific parameters for a set of actions when
performing this checking:

void max ignore route(max actions t ∗actions, const char ∗block name);
void max ignore offset( max actions t ∗actions, const char ∗kernel name, const char ∗offset var name);
void max ignore kernel(max actions t ∗actions, const char ∗kernel name);
void max ignore block(max actions t ∗actions, const char ∗block name);

For a mapped memory, the whole memory can be ignored, or just the input or output:

void max ignore mem(max actions t ∗actions, const char ∗block name, const char ∗mem name);
void max ignore mem input(max actions t ∗actions, const char ∗block name, const char ∗mem name);
void max ignore mem output(max actions t ∗actions, const char ∗block name, const char ∗mem name);

Validation for a set of actions can be disabled altogether:

void max disable validation(max actions t ∗actions);

W Disabling action validation makes it possible to execute an incomplete set of actions, which can
lead to bugs that are hard to track down.

10.6.8 Groups and arrays of engines

Groups and arrays of engines behave in the same way as when using the Advanced Static level func-
tions (see subsection 10.4 and subsection 10.5).

In the case of arrays, there is an Advanced Dynamic function for running the array, max run array:

void max run array(max engarray t ∗engarray, max actarray t ∗actarray);

For groups of engines, when no state needs to be maintained between operations on a DFE,
max run group locks, runs and unlocks the DFE via a single function call:

void max run group( max group t ∗group, max actions t ∗actions);

10.7 Engine interfaces

Engine interfaces encapsulate different behavior or stages of execution for a .max file, simplifying the
API for the CPU programmer. You can control which parameters and I/O are available in each engine
interface, with inputs and outputs for the .max file either ignored or set automatically based on inputs
from the CPU code.

Engine interfaces can be used to control the APIs for all inputs and outputs to the .max file.

• Number of ticks for Kernels to run

• Streams between the CPU and the DFE

• Streams to or from the LMem (see section 13)

• Scalar inputs and outputs

• Mapped memory inputs and outputs
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• Offset parameters

• Routing blocks (fanout, multiplexers and demultiplexers) in Custom Managers (see Manager
Compiler Tutorial)

• Autoloop offset values (see Acceleration Tutorial - Loops and Pipelining)

• Kernel distance measurements (see Acceleration Tutorial - Loops and Pipelining)

In the default engine interface, an argument for the number of ticks is added to the SLiC inter-
face, and all streams are assumed to contain a number of elements equal to that number of ticks. All
scalar inputs and outputs, mapped memories, stream offset parameters and Manager routing blocks
are automatically added to the SLiC Interface, unless the default engine interface is overridden (see
subsubsection 10.7.2). The only exceptions are AutoLoop offset values and Kernel distance measure-
ments, which must be added explicitly (see subsubsection 10.8.3).

10.7.1 Adding an engine interface to a Manager

A standard simple engine interface is added to a .max file when createSLiCinterface is called
without any arguments. This type of interface works for many simple programs but may not be flexible
enough for all of your dataflow programs.

For complicated managers and kernels, custom engine interfaces can be added by creating an
instance of the EngineInterface class, configuring the settings for the engine interface and then
calling createSLiCinterface with the engine interface as a parameter, for example:

...
Manager manager = new Manager(params);
...
EngineInterface myInterface = new EngineInterface(”myInterface”);
...
manager.createSLiCinterface(myInterface);
manager.build();
...

Instances of EngineInterface are declared with a string for the name and an optional string
argument doc for text that appears in the comments in the .max file and SLiC header file:

public EngineInterface(String name, String doc)
public EngineInterface(String name)

10.7.2 The default engine interface

Engine interfaces are given names by the MaxJ programmer, resulting in a interface to the Maxfile
named maxfilename interfacename. If the engine interface is given the special name “default” (or
the shortcut constructor EngineInterface() is used), then the resulting function gets the special
name maxfilename only. This is particularly suitable for DFEs which have one primary interface but
may have other supporting interfaces to be used to perform specific operations.

If you do not create a “default” engine interface yourself, an interface will automatically be created
which exposes all parameters for the kernels and manager.

For some DFEs, a “default” engine interface is inappropriate, so you can completely suppress the
default engine interface from the SLiC API using the suppressDefaultInterface method on the
Manager class.
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10.7.3 Ignoring unset parameters

It is common for a .max file not to require a particular parameter to be set or visible for a given engine
interface. All parameters that are not explicitly set in a engine interface can be ignored using the
ignoreAll method:

void ignoreAll ( Direction flag )
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The flag argument selects whether to ignore only inputs, outputs or both:

public static enum Direction {
IN,
OUT,
IN OUT;

};

Direction.IN refers to all settings that are sent from the CPU to the DFE, and includes:

• Number of ticks for Kernels to run

• Stream inputs from the CPU to the DFE

• Stream outputs from the DFE to the CPU

• Streams to or from the LMem

• Scalar inputs

• Mapped memory inputs

• Offset parameters

• Routing blocks (fanout, multiplexers and demultiplexers) in Custom Managers (see Manager
Compiler Tutorial)

Direction.OUT refers to data that is returned from the .max file or DFE to the CPU application:

• Scalar outputs

• Mapped memory outputs

• Autoloop offset values (see Acceleration Tutorial - Loops and Pipelining)

• Kernel distance measurements (see Acceleration Tutorial - Loops and Pipelining)

10.7.4 Ignoring specific parameters

Individual parameters can be suppressed in the API using one of a set of ignore methods on the
engine interface:

void ignoreLMem(String streamName)
void ignoreStream(String streamName)
void ignoreRoute(String routingBlock)

void ignoreOffset(String blockName, String offsetName)
void ignoreScalar(String blockName, String scalarName)

In the case of mapped memories, whether to ignore inputs, outputs or both must also be specified,
again using the Direction enum:

void ignoreMem(String blockName, String memName, Direction flag)

Similarly, parameters can be unignored:

void unignoreScalar(String blockName, String scalarName)
void unignoreMem(String blockName, String memName)
void unignoreDistanceMeasurement(String kernelName, String name)
void unignoreAutoLoopOffset(String kernelName, String name)
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Unignoring parameters is useful when used in conjunction with a call to ignoreAll to simplify the
code where there is a large number of parameters.

10.7.5 Ignoring an entire Kernel

All of the inputs and outputs for a particular Kernel can be ignored with a single method call:

void ignoreKernel(String kernelName)

10.8 Engine interface parameters

An engine interface parameter is a user-defined parameter that can be used to express relationships
between kernel entities such as tick count and stream length. Simple arithmetic operations may be
performed with engine interface parameters to make more complex relationships.

Engine interface parameters can be created using the addParam method, which has two variants,
the second of which takes a string argument doc to add documentation for the end-user of the .max

file.

InterfaceParam addParam(String name, CPUTypes type)
InterfaceParam addParam(String name, CPUTypes type, String doc)

An engine interface parameter becomes an input argument in the SLiC API with the specified CPU
type. type can be any of the following values:

public enum CPUTypes {
UINT8, // -> uint8 t
INT8, // -> int8 t
UINT16, // -> uint16 t
INT16, // -> int16 t
INT, // -> int ( int64 t )
INT32, // -> uint32 t
UINT32, // -> uint32 t
UINT64, // -> uint64 t
INT64, // -> int64 t
FLOAT,
DOUBLE,
VOID;
}

For example, consider adding an engine interface parameter for the size of the incoming data
stream:

...
EngineInterface myInterface = new EngineInterface();
InterfaceParam inputDataSize = myInterface.addParam(”inputDataSize”, UINT32, ”The size of the input data stream in words”);
...
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This appears as a 32-bit, unsigned integer argument in the Basic Static SLiC interface:

/∗∗
∗ \brief Simple static function for the engine interface ’ default ’.
∗
∗ ...
∗ \param [in] param inputDataSize Interface Parameter ”inputDataSize”: The size of the input data stream in words
∗ ...
∗/

void MyMaxFile(
...
int32 t param inputDataSize,
...) ;

10.8.1 Kernel settings

Various Kernel configuration options can be set in a SLiC engine interface:

• Number of ticks for Kernels to run

void setTicks(String blockName, InterfaceParam p)
void setTicks(String blockName, long p)

• Stream settings

void setStream(String streamName, CPUTypes type, InterfaceParam p)
void setStream(String streamName, CPUTypes type, long p)

• Mapped memory inputs

void setMem(String blockName, String memoryName, int index, double value)
void setMem(String blockName, String memoryName, int index, long value)
void setMem(String blockName, String memoryName, int index, InterfaceParam value)

• Offset expressions

void setOffset(String blockName, String offsetName, InterfaceParam p)
void setOffset(String blockName, String offsetName, long p)

• Scalar inputs

void setScalar(String blockName, String scalarName, long value)
void setScalar(String blockName, String scalarName, double value)
void setScalar(String blockName, String scalarName, InterfaceParam p)

In each case, overloaded versions of the methods allow the values to be set either from a Java
variable or from an engine interface parameter.

There are no explicit functions for retrieving the values of scalar outputs or mapped-memory out-
puts: these are automatically added by the engine interface, unless disabled using ignoreScalar or
ignoreMem, as described in subsubsection 10.7.4.
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10.8.2 LMem settings

LMem settings can be set either using all Java variables or all engine interface parameters:

void setLMemLinear(String streamName, long address, long size)
void setLMemLinear(String streamName, InterfaceParam address, InterfaceParam size) {

void setLMemLinearWrapped(String streamName, InterfaceParam address, InterfaceParam arrSize, InterfaceParam rwSize,
InterfaceParam offset)

void setLMemLinearWrapped(String streamName, long address, long arrSize, long rwSize, long offset) {

void setLMemStrided(String streamName, long address, long sizeFast, long sizeSlow, long strideMode)
void setLMemStrided(String streamName, InterfaceParam address, InterfaceParam sizeFast, InterfaceParam sizeSlow,

InterfaceParam strideMode)

void setLMemBlocked(String streamName, long address,
long arraySizeFast, long arraySizeMed, long arraySizeSlow,
long rwSizeFast, long rwSizeMed, long rwSizeSlow,
long offsetFast, long offsetMed, long offsetSlow )

void setLMemBlocked(String streamName, InterfaceParam address,
InterfaceParam arraySizeFast, InterfaceParam arraySizeMed, InterfaceParam arraySizeSlow,
InterfaceParam rwSizeFast, InterfaceParam rwSizeMed, InterfaceParam rwSizeSlow,
InterfaceParam offsetFast, InterfaceParam offsetMed, InterfaceParam offsetSlow )

void setLMemInterruptOn(String streamName)

Two methods are provided to create an engine interface parameter instance from a Java variable:

InterfaceParam addConstant(double value)
InterfaceParam addConstant(long value)

For details on LMem access patterns and interpretation of the settings, see subsection 13.3.

10.8.3 Autoloop offset parameters and distance measurements

Engine interface parameters to retrieve autoloop offset parameters and distance measurements (see
the Loops and Pipelining Acceleration Tutorial) from a Kernel can be added to an engine interface:

InterfaceParam getAutoLoopOffset(String kernelName, String name)
InterfaceParam getDistanceMeasurement(String kernelName, String name)

These parameters are special cases that are added to the SLiC API as outputs to the CPU code,
as well as behaving as standard InterfaceParam objects for the purposes of setting parameters on
Kernels or Managers. For example, let us take adding a distance measurement in an engine interface:

EngineInterface myInterface = new EngineInterface();
InterfaceParam loopLength = myInterface.getDistanceMeasurement(”myKernel”, ”loopLength”);

This adds an argument param MyKernel loopLength to the SLiC interface, for example in the
case of Basic Static:

void MyMaxFile(
...
int32 t ∗param MyKernel loopLength,
...) ;
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If the engine interface parameter for an autoloop offset parameter or distance measurement is only
used in the Manager itself, for example in a calculation to set a Kernel or Manager parameter, it can be
suppressed from the SLiC interface:

void ignoreAutoLoopOffset(String kernelName, String name)
void ignoreDistanceMeasurement(String kernelName, String name)

10.8.4 Engine interface parameter arrays

Engine interface parameter arrays allow an array of data to be passed from the CPU code to the .max

file:

public InterfaceParamArray addParamArray( String name, CPUTypes type, String doc )
public InterfaceParamArray addParamArray( String name, CPUTypes type )

Within a Manager, the InterfaceParam elements of the array are accessed using the array access
[] operator, using either a InterfaceParam or a Java integer as the index.

In many cases, the size of the engine interface parameter array can be inferred from the engine
interface code, for example:

InterfaceParamArray coeff = myInterface.addParamArray(”coeff”, CPUTypes.FLOAT);
for ( int i = 0 ; i < 100 ; i++ ) {

myInterface.setScalar(”myKernel”, ” filter ” + i , coeff [ i ]) ;
}

This may not be possible if the engine interface parameter array is indexed only using by an
InterfaceParam instance, for example:

InterfaceParam idx = myInterface.addParam(”idx”, CPUTypes.UINT32);
InterfaceParamArray coeff = myInterface.addParamArray( ”coeff”, CPUTypes.FLOAT);
myInterface.setScalar(”myKernel”, ”myScalar”, coeff[ idx ] ) ;

In this case, the size of the engine interface parameter array must be set explicitly:

coeff .setMaxSize( 100 );

10.9 .max file constants

In many designs, a .max file is built with a number of compile-time parameters that define, for example,
behavior, limits or dimensions. These can be passed to the CPU code as constants in the .max file.

Three methods on the Manager class are provided for defining integer, floating-point and string
constants that appear as #defines in the SLiC header file:

void addMaxFileConstant(String name, int value)
void addMaxFileStringConstant(String name, String value)
void addMaxFileDoubleConstant(String name, double value)

The name argument is the string that is appended to the name of the .max file to give the name
of the constant in the SLiC header file, for example, for a .max file with the name MyMaxfile and a
floating-point constant myconstant with the value 0.5, the resultant #define appears as:

1 #define MyMaxfile myconstant (0.5)
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It is also possible to retrieve maxfile constants using dynamic functions, named
max get constant string, max get constant double and max get constant uint64t, de-
pending on the type of the constant.

10.10 Asynchronous execution

In many applications, it is more efficient for the CPU application to continue executing code while the
DFE is running a set of actions. SLiC provides non-blocking versions of the functions we have seen
so far for running actions on engines, groups and arrays. These functions return immediately once the
actions have been committed, allowing the CPU application to continue execution.

Initialization, loading and unloading of .max files onto DFEs is performed in the same way as for
the blocking API functions. When it comes to running individual DFEs, arrays or groups of DFEs, there
are nonblock versions of the Static SLiC Interface functions in the .max file header file. For example,
our moving average has the following non-blocking functions:

max run t ∗MovingAverage nonblock(int32 t param N, const float ∗instream x, float ∗outstream y);
max run t ∗MovingAverage run nonblock(max engine t ∗engine, MovingAverage actions t ∗interface actions);
max run t ∗MovingAverage run group nonblock(max group t ∗group, MovingAverage actions t ∗interface actions);
max run t ∗MovingAverage run array nonblock(max engarray t ∗engarray, MovingAverage actions t ∗interface actions[]);

Likewise, there are Advanced Dynamic non-blocking functions:

max run t∗ max run nonblock(max engine t ∗engine, max actions t ∗actions);
max run t∗ max run array nonblock(max engarray t ∗engarray, max actarray t ∗actarray);
max run t∗ max run group nonblock(max group t ∗group, max actions t ∗actions);

All of these non-blocking functions return a handle to the execution status (a pointer to a max run t

structure), or NULL in the case of an error. To re-synchronize with the DFE, there is a function to wait
for the actions to complete for an execution handle:

void max wait(max run t ∗run);

In the case of arrays of DFEs, this waits for the set of actions to be completed on all the DFEs in
the array.

Calling a non-blocking run function on the same DFE(s) queues up action sets: this helps minimize
any idle time between actions on a DFE, especially when running remote DFEs on an MPC-X node.

To indicate to SLiC that the outcome of a set of actions being executed is to be ignored in the CPU
code, max nowait must be called:

void max nowait(max run t ∗run);

This can be useful when queuing a number of action sets on a DFE (or array of DFEs), so that the
CPU application only need wait for the last one to be completed.

W Either max wait or max nowait must be called for every execution status handle to ensure
that SLiC can release all the associated memory.
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W
max nowait cannot be run on an execution status handle for actions running on a group of
DFEs, as actions may be executed out of sequence. Calling max nowait with such a handle
raises an error.

10.10.1 Asynchronous execution example

The moving average from section 3 can be modified to run the CPU version of the moving average at
the same time as the moving average is being executed on the DFE:

max run t ∗execStatus = MovingAverage nonblock(size, dataIn, dataOut);

MovingAverageCPU(size, dataIn, expected);

/∗ Other CPU work can be done here. ∗/

max wait(execStatus);

And using the Advanced Static API:

max file t ∗mavMaxFile = MovingAverage init();
max engine t ∗mavDFE = max load(mavMaxFile, ”local:∗”);

MovingAverage actions t actions;
actions.param N = size;
actions.instream x = dataIn;
actions.outstream y = dataOut;

max run t ∗execStatus = MovingAverage run nonblock(mavDFE, &actions);

MovingAverageCPU(size, dataIn, expected);

/∗ Other CPU work can be done here. ∗/

max wait(execStatus);

max unload(mavDFE);

10.11 Error handling

Errors are reported into error contexts, which are instances of the max errors t structure. There are
a number of handles in SLiC that contain an error context:

max file t - .max file handles

max actions t - action sets

max engine t - engine handles

max engarray t - engine array handles

max actarray t - action set array handles

max group t - engine group handles

max run t - execution status handle (see subsection 10.10)
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The error context is called errors in every case and thus can be accessed as, for example
mymaxfile->errors.

By default, SLiC is configured to abort execution of the CPU program on an error. This can be
disabled using max errors mode:

void max errors mode(max errors t ∗errors, int abort on error);

A value for abort on error of 0 instructs the application not to abort for the specified error context,
1 instructs it to abort.

Setting max errors mode on an error context for a handle sets the error contexts for all the handles
created from it to have the same behavior. For example, setting the error context for a .max file to not
abort on an error causes all arrays, groups, engines, actions and action arrays created from the .max

file handle to also not abort on an error. Where a function takes multiple handles as arguments, the
abort behavior of the returned handle is inherited from the engine, array or group handle. Individual
error contexts that have inherited abort behavior can still be changed if required.

max ok is used to check an error context on a handle once a function has returned:

int max ok(max errors t ∗errors);

This returns 1 if there are no errors or 0 if there are errors. Alternatively specific errors can be
checked using max errors check:

int max errors check(max errors t ∗ errors, int error code);

This takes an integer argument for the error code and returns 1 if the error has been raised or 0 if
not.

W For error contexts that are not set to abort on error, the error context of every handle passed
as an argument to a function must be checked once that function has returned.

W For error contexts that are not set to abort on error, handles returned from SLiC functions must
always be tested for NULL.

A text trace of the error can be retrieved by passing the error context to max errors trace:

char∗ max errors trace(max errors t ∗ errors);

The returned string is allocated by the function and must be deallocated as appropriate by your
CPU application.
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Option string Type Default Description

default pcie timeout integer 30 Default timeout for PCIE stream trans-
fer (seconds)

default wfi timeout integer 30 Default timeout for interrupt wait (sec-
onds)

default topology timeout integer -1 (infinite) Default timeout for topology allocation
(seconds)

default maxdebug mode enum never Default debug mode, see Figure 5.3.5
verbose Boolean false Enable full debug output
eventlog ignore errors Boolean false Ignore errors in the event logging mod-

ule
eventlog enable Boolean false Enable event monitoring, even if it is

not enabled in the CPU code
dfeprintf enable Boolean true Enable dfePrintf output
find next debug dir Boolean true Change the debug directory name if

the current one already exists
printf to stdout Boolean true Stream Debug.printf to standard

output
default engine resource string NULL Default location of the engines
use simulation string NULL Simulation server socket
default eventlog server string NULL Name of event logging server
default eventlog process name string NULL Event logging process name
debug dir string debug Directory where debug output is writ-

ten

Table 7: SLiC configuration options.

10.12 SLiC configuration

In addition to the configuration available through the C interface, aspects of SLiC can be configured
through both configuration files and environment settings. The inputs are parsed in this order:

1. File defined in environment variable $SLIC DEFAULT CONF FILE

2. File ~/.MaxCompiler slic user.conf

3. File defined in environment variable $SLIC CONF FILE

4. Settings defined in environment variable $SLIC CONF (used by MaxIDE and example Makefiles)

There are integer, Boolean and string settings, shown with their default values and description in
Table 7. Settings are defined as key-value pairs of the form option=value. In a configuration file, one
pair is defined per line, for example:

#set timeouts

default_pcie_timeout = 60

default_wfi_timeout = 60

In the environment variable, pairs are separated by the ; character, for example:
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export SLIC_CONF="default_pcie_timeout = 60;default_wfi_timeout = 60"

Comments can be added to the file by beginning a line with the # character. Empty lines are ignored.

10.13 Debug directories

A SLiC application may produce a number of debug output files, as covered in section 5:

• when the application is run from within MaxIDE, these output files are generated in a time-
stamped directory present under the debug in the corresponding RunRule folder, e.g.
RunRules/Simulation/debug/2013.07.03-14.16.30-380-BST;

• when the application is run from the command line, these outputs are generated in a directory
below the current directory. By default, the name of this debug directory is debug if no preexisting
directory with that name is present, otherwise, a suffix is added to the debug, yielding debug 1,
debug 2, etc. This behavior can be modified by way of the debug dir and find next debug dir

configuration keywords presented in Table 7.

10.14 SLiC Installer

sliccompile supports generating installers generated from .max files that allow end users to install
bindings for their chosen language.

To produce an installer using sliccompile specify the target as ‘installer’. For example to create
an installer for the moving average example run:

[user@machine]$ sliccompile -t installer -m MovingAverage.max

This creates an installer named MovingAverage installer. This now accepts Python, MATLAB
and R target for auto-generated bindings in these languages. To produce Python bindings, for instance,
run

[user@machine]$ MovingAverage_installer -t python

This generates Python bindings for the .max file the installer was built with in the same way that slic-
compile would if passed the .max file.

When creating an installer passing multiple .max files for multiple .max files is supported. Each
must be specified after -m switch. E.g.

[user@machine]$ sliccompile -t installer -m VECTIS/MovingAverage.max -m

CORIA/MovingAverage.max

The platform switch (-p) can then be passed to the installer to build the binding for the specified platform.
E.g.

[user@machine]$ MovingAverage_installer -t python -p VECTIS
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Controlled Inputs and Outputs

There are known knowns ... There are known unknowns ... But there are also unknown
unknowns. There are things we do not know we don’t know.

– Donald Rumsfeld

In the simplest case, all input and output streams have the same size, as for example in a simple
dataflow program that multiplies every input value by a constant to produce its output. If we have a
Kernel that adds every two input data items together to produce a single output, however, the output
stream is half the size of the input stream. To deal with such input and output streams of non-uniform
length, we use controlled inputs and controlled outputs.

11.1 Controlled inputs

We control dataflow inputs using streams of Boolean values, telling the gate for a dataflow input to be
open or closed during each tick. A controlled input is declared using an extended version of the familiar
method io.input with an additional argument for the control stream:
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io . input(String name, KernelType type, DFEVar control)

Computing in a DFE is driven by data. The availability of data at the gate of an operation makes
computation happen as the data flows through the computational units. Dataflow computation pauses
when there is no valid data at any of the enabled inputs. For example, dataflow computation stalls if
there is no data to compute on. If all enabled inputs for a particular kernel have valid data then the
dataflow kernel is active. However, if all the inputs for a particular kernel are disabled, then the dataflow
kernel does not wait for external data and simply keeps processing internal loops based on internal
kernel state. So in essence, controlled inputs really also control execution of computation inside a
dataflow kernel.

Assuming that valid data exists at all inputs and that outputs have room to write to their output
buffers then:

• Each time a Boolean ‘1’ appears in the stream at the control input to a Kernel input, a new value
from the input stream is passed into the Kernel.
• Each time a Boolean ‘0’ appears in the stream at the control input to a Kernel input, the previous

value from the input stream is passed into the Kernel. If the designer of the Kernel prefers that a
value other than the previous value, zero for example, should be streamed in, then they need to
specify this explicitly in their design using a multiplexer.

11.2 Controlled outputs

As before, a controlled output is declared using an extended version of the familiar method io.output

with an additional argument for the control stream:

io .output(String name, KernelObject output, KernelType type, DFEVar control)

Assuming that valid data exists at all inputs and that outputs have room to write to their output
buffers then:

• Each time a Boolean ‘0’ appears in the stream at the control of an output, the output stream’s
value is discarded and is not passed out of the Kernel.
• Each time a Boolean ‘1’ appears in the stream at the control of an output, the output stream’s

value is passed out of the Kernel.

11.3 Simple controlled input example

Listing 34 shows the source for an example using a controlled input. The corresponding Kernel graph
is shown in Figure 36.

Input a and input c are continuous data streams that pass inputs to the core whenever there is data
available:

26 DFEVar a = io.input(”a”, dfeUInt(dataWidth));
27 DFEVar c = io.input(”c” , dfeBool()) ;

Input b only passes inputs to the core when the current value of input stream c is 1:

29 DFEVar b = io.input(”b”, dfeUInt(dataWidth), c) ;
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Figure 36: Kernel Graph featuring simple use of controlled input

When the Boolean value from input stream c is 0, the previous value of b passes into the core. A
multiplexer uses the control stream c to select between the current value of b or 0, and thus if c is 0
then the output is a + 0 instead of a + b:

32 DFEVar result = a + (c ? b : 0);

11.4 Example for an input controlled by a counter

The control for an input or output does not have to derive from an input: input and output controls can
also be derived from internally generated streams such as counters. The output of a counter can be
passed to a comparator to generate the necessary Boolean stream.

Listing 35 shows an implementation of a Kernel that uses a counter to control one of its inputs.
The first 10 values from the controlled input stream b are added to continuous stream a and output

in stream y. After the first 10 elements of a and b, the unmodified data from stream a is output in stream
y.

We use a counter to output only the first 10 elements of stream b:

20 DFEVar readLimit = io.scalarInput(”readCount”, dfeUInt(32));
21 DFEVar count = control.count.simpleCounter(32);
22 DFEVar read = count < readLimit;
23
24 // Inputs
25 DFEVar b = io.input(”b”, dfeUInt(32), read);

A multiplexer is used to select between adding either the first ten elements of b or zero (to give the
unmodified value) to a:

29 DFEVar result = a + (read ? b : 0);
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Listing 34: Class with a simple controlled input (SimpleControlledInputKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 11 Example: 1 Name: Simple controlled Input
4 ∗ MaxFile name: SimpleControlledInput
5 ∗ Summary:
6 ∗ Kernel design using a controlled input . Inputs a and c are continuous
7 ∗ data streams that will pass inputs to the core whenever there is data
8 ∗ available . Input b will only pass inputs to the core when the current
9 ∗ value of input stream c is 1.

10 ∗/
11
12 package simplecontrolledinput;
13
14 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
16 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
17
18 class SimpleControlledInputKernel extends Kernel {
19
20 private static final int dataWidth = 32;
21
22 SimpleControlledInputKernel(KernelParameters parameters) {
23 super(parameters);
24
25 // Inputs
26 DFEVar a = io.input(”a”, dfeUInt(dataWidth));
27 DFEVar c = io.input(”c” , dfeBool()) ;
28
29 DFEVar b = io.input(”b”, dfeUInt(dataWidth), c) ;
30
31 // Logic
32 DFEVar result = a + (c ? b : 0);
33
34 debug.simPrintf(”c: %d\n”, c);
35 // Output
36 io .output(”y” , result , dfeUInt(dataWidth));
37 }
38 }

The result is then written to y:

32 io .output(”y” , result , dfeUInt(32)) ;

W
The example uses a simple 32-bit counter for clarity, but this wraps when it reaches 232, so
the Kernel tries to read in another 10 elements from input stream b. A complex counter in
STOP AT MAX mode provides a more robust implementation that only ever reads in the first 10
elements of b.
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Listing 35: Class with a counter controlled input (CounterControlledInputKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 11 Example: 2 Name: Counter Controlled Input
4 ∗ MaxFile name: CounterControlledInput
5 ∗ Summary:
6 ∗ Kernel design that uses a counter to control one of its inputs.
7 ∗/
8
9 package countercontrolledinput;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 public class CounterControlledInputKernel extends Kernel {
16 public CounterControlledInputKernel(KernelParameters parameters) {
17 super(parameters);
18
19 // Control Counter
20 DFEVar readLimit = io.scalarInput(”readCount”, dfeUInt(32));
21 DFEVar count = control.count.simpleCounter(32);
22 DFEVar read = count < readLimit;
23
24 // Inputs
25 DFEVar b = io.input(”b”, dfeUInt(32), read);
26 DFEVar a = io.input(”a”, dfeUInt(32)) ;
27
28 // Logic
29 DFEVar result = a + (read ? b : 0);
30
31 // Outputs
32 io .output(”y” , result , dfeUInt(32)) ;
33 }
34 }

Exercises
Exercise 1: Counter-controlled input

Through the use of a counter-controlled input, create a Kernel design that merges two color images.
The image blue.ppm is a 512x512 image that should serve as one input to the design. The other input
should be the 256x256 image lena256.ppm. The output should be a 512 x 512 color image with the
256x256 Lena image centered on the blue background. The output should look like Figure 37.

Note that the input image stream comes into the Kernel as a sequence of three color components
per pixel, Red, Green and Blue, one component per Kernel tick.

A copy of the image shown in Figure 37 is provided in lena merged.ppm for comparison purposes.

Exercise 2: Controlled output

Take the image result file from Exercise 1. Through the use of a controlled output, discard 3 out of every
4 pixels to produce an output that is the input image scaled to 256x256 size. For each group of four
pixels {(0,0), (1,0), (0,1), (1,1)}, only pixel (0,0) should be taken. The output should look
like Figure 38.
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Figure 37: Blue-Framed Lena Image

Figure 38: Scaled Lena Image
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12
On-chip FMem in Kernels

We are forced to recognize the possibility of constructing a hierarchy of memories, each of
which has greater capacity than the preceding, but which is less quickly accessible.

– John von Neuman

DFEs provide two basic kinds of memory: FMem and LMem. FMem (Fast Memory) is on-chip Static
RAM (SRAM) which can hold several MBs of data. Off-chip LMem (Large Memory) is implemented
using DRAM technology and can hold many GBs of data. The key to efficient dataflow implementations
is to choreograph the data movements to maximize the reuse of data while it is in the chip and minimize
movement of data in and out of the chip. In this section we address the use of FMem directly within
kernels.

All inputs and outputs to kernel memories are streams:

• Streams of addresses go in.

• Streams of data come out.

• Where data is being written, streams of data input go into the RAM.
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Kernel memories have multiple streams in and out of the memory that can look at the same set of
data in a single tick.

12.1 Allocating, reading and writing FMem

All kernel memory uses the same basic declaration, taking two arguments: the type of the data stored
in the memory and the number of items to be stored. The method alloc returns a Memory object which
can then be used to access the memory.

Memory<DFEVar> mem.alloc(DFEType type, int depth)

Memory is parameterized with a Java generic DFEVar indicating the type of stream that the memory
will retain. Memories can also contain composite kernel types in which case the appropriate alternative
string would be used (DFEVector, DFEComplex, etc).

Memory which is read and written is termed a RAM, while memory that is only read is termed a
ROM. Example uses for RAMs include storing a window into an input or output stream, state to be
reused within a Kernel and reordering of data. Data can be written into a RAM via the call:

Memory.write(DFEVar address, DFEVar data, DFEVar enable)

The write method has three input streams: addresses to write to, the data to write to that address
and a 1-bit enable which indicates whether the write should be executed or not in that tick. The enable
is vital to allow the programmer to selectively control what data is written into a RAM.

A second stream stream of outputs can be read from specified addresses in the RAM:

Memory.read(DFEVar address)

There are some restrictions on writing into memories. In particular:

• If you write to a memory address in a kernel tick you can not call read with the same address in
the same tick. Attempting to do so will return undefined data.

• You are limited to either a maximum of 2 calls to write and no calls to read on a memory, or 1
call to write and any number of calls to read.

W The content of a memory is undefined when the dataflow engine is first loaded. Once the
content is set by the user, the data in the memory persists when the Kernel is reset.

12.1.1 Memory example

Example 1 shows a memory used to reverse the order of data in an input stream. The Kernel source is
shown in Listing 36.

The memory is declared to contain single-precision floating point numbers:

50 Memory<DFEVar> reverseRam = mem.alloc(dfeFloat(8,24), DATA SIZE);

Data is written into the memory using a call to write:

51 reverseRam.write(inputAddress, inputData, readingInput);
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The output is created with a read call:

52 DFEVar outputData = reverseRam.read(outputAddress);

The code in the example has two phases of operation:

Phase 1 : the input stream is written into the memory.

Phase 2 : the data is read out in reverse order from the memory.

A counter counts to twice the size of the data set stored in the memory. Dropping the most significant
bit from the counter gives an incrementing address to each element in the memory to write the input
data. Reversing this address gives a decrementing address to each element to read the data from the
memory in reverse order. Data is written into the memory while the counter is less that the size of the
memory. When the counter hits the size of the memory, the input stream is disabled and the contents
of the memory are written out to the output stream in reverse order.

W This example is not a general-purpose method for reversing an arbitrarily-sized input stream as
it only reverses chunks of the stream that are the size of the memory.

W A useful function when working with memories is MathUtils.bitsToAddress(dataSize),
which returns the number of bits required to address a memory of dataSize.

12.2 Using memories as read-only tables

One common use of kernel memories is to store tables of infrequently changing constants, for example
coefficients, as Read-Only Memory (ROMs). This gives the equivalent behavior to using a large number
of constants and multiplexing between them, but is more space and performance efficient when there
are more than a few data items.

ROM tables can be initialized with contents specified either as an array of doubles or using Bits.

12.2.1 ROM example

Example 2 demonstrates the use of FMem as a ROM. The Kernel source for this example is shown in
Listing 37. This simple example takes an input stream of addresses and outputs the contents of the
ROM. The contents of the ROM are initialized with the first quarter of a sine curve using standard Java
math routines, by calling the setContents function.

A single read call generates an output from the memory. Multiple read calls with different address
inputs can return different values from the table in the same kernel tick.

12.2.2 Setting memory contents from the CPU

Memories can optionally be mapped, which allows them to be changed by the CPU at runtime, ideally
when the kernel is inactive. Mapped memories are an alternative to setting memory contents at compile-
time only, and are very useful for values that change slowly but sufficiently frequently that it would be
undesirable to recompile the maxfile.
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Memories that are mapped to the CPU are declared with the same syntax as normal memories, but
with an additional call to declare a name which can be used by the CPU to set the memory contents.

Memory.mapToCPU(String name)

It is important to note that using a mapped memory is an alternative to setting the contents in the
kernel, i.e. it is not valid to call both setContents and mapToCPU on the same memory. Mapped
memories should be initialized with contents from CPU code.

12.2.3 Mapped ROM example

Example 3 demonstrates the use of a mapped memory as a ROM with multiple reads. The Kernel
source for this example is shown in Listing 38. In this example, two input streams of addresses are
passed to read calls for the memory and the corresponding outputs are connected directly to the
kernel’s output streams.

The following lines show the instantiation of the ROM and mapping it to the CPU with the name
‘‘mappedRom’’:

27 Memory<DFEVar> mappedRom = mem.alloc(dfeFloat(8,24), dataSize);
28 mappedRom.mapToCPU(”mappedRom”);

Once the memory is initialized, two calls to read are made and the results are connected to the
kernel output streams:

31 DFEVar readA = mappedRom.read(addressA);
32 DFEVar readB = mappedRom.read(addressB);
33
34 io .output(”outputA”, readA, dfeFloat(8,24)) ;
35 io .output(”outputB”, readB, dfeFloat(8,24)) ;

The contents of the ROM are set in the CPU code by passing a pointer to the contents as an
argument to the SLiC function for running the DFE.

The CPU code for this example is shown in Listing 39. A block of memory is allocated and then set
up with the desired values; in this case our sine function:

69 double ∗romContents = malloc(sizeBytesDouble);

74 generateInputData(
75 size,
76 inAddressA, inAddressB,
77 romContents, romContentsReversed);

The contents are then passed to the SLiC function:

80 DualPortMappedRom(
81 size,
82 inAddressA, inAddressB,
83 outDataA, outDataB,
84 romContents);

It is often useful to create custom SLiC engine interfaces to separate setting mapped memory values
into a specific initialization SLiC interface function and then not set them during the compute function
(using the ignoreMem function on the engine interface object). This saves uploading identical values
for the mapped memory repeatedly every time the DFE runs a computation.
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12.3 Creating a memory port which both reads and writes

As an optimization, it is also possible to create a single memory port which both reads and writes in the
same tick using the same address:

DFEVar Memory.port(DFEVar address, DFEVar data in, DFEVar enable, RamWriteMode portMode)

A read-write port has input address, data and write-enable streams and an output data stream; the
input address stream is used for both the write and read locations. A read-write memory port always
outputs data from the location specified in the input address stream, regardless of the status of the
write-enable stream.

Read/write memory ports must be set with a RamWriteMode, which can either be READ FIRST or
WRITE FIRST. This determines the behavior when data is read from and written in the same tick. In
READ FIRST mode, the existing contents of the memory location is read before being written over. In
WRITE FIRST mode, the new value propagates directly to the output in the same tick as it is being
written. Not all DFE architectures support both modes.

W
RamWriteMode applies only to determining whether the read or write should be performed
first for this port, accessing the same address from another port will return undefined data
regardless of what mode is used.

12.4 Understanding memory resources

Kernel memories are implemented using a special on-chip memory resource. The amount of on-chip
memory used by an application can often be a determining factor in its performance, so it is worth
understanding a little of how memories are built and what the costs of different operations are.

The number of on-chip BRAM resources required for a particular kernel memory depends on:

• The number of items in the memory (i.e. its depth).

• The type of the data held in the memory (i.e. its width).

• The number and type of ports.

In general, the larger the memory the more silicon area it will require. Memories with many ports
will use also use more on-chip area because the basic storage element must be replicated to provide
parallel access. A physical on-chip BRAM resource supports two ports, so if more ports are requested
(e.g. many calls to the read function) then several instances of the resource will be automatically
allocated to provide the correct level of access parallelism. The fact that BRAMs have 2 ports is also
the source of the restriction that kernel memories with more than two ports must have at most one write
port, since the write data must be copied to all parallel memory instances.

In general, the amount of memory resource required in silicon for memories with only read ports
scales with:

depth× width× (numreadports÷ 2)

For memories with 1 write port and many read ports, the silicon resource requirements are proportional
to:

depth× width× numreadports
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(a) Original image (b) Processed image

Figure 39: Original image and image after the coefficients have been applied.

Exercises
Exercise 1: Simple ROM

In this exercise, a simple application is supplied that streams in a 256x256 pixel image in the same
format as for the exercises in section 11: Controlled Inputs and Outputs. Modify this example to apply
a set of coefficients to each line of the image. There should be one coefficient for each pixel in a line
of the image. The coefficients should be floating-point numbers between 0.0 and 1.0. A suitable set of
coefficients can be calculated using the equation:

ci =

{
1.0− (1.0/(X/2))× ((X/2)− i) if i < X/2
1.0− (1.0/(X/2))× (i− (X/2)) if i ≥ X/2

Where ci is the coefficient for the ith pixel in a row and X is the width of a row in the image.
Figure 39 shows the image before and after these coefficients have been applied.

W Remember that the input image stream comes into the Kernel as a sequence of three color
components per pixel, Red, Green and Blue, one component per tick.

Exercise 2: Dual-port RAM

Modify the previous exercise to read in the coefficients from an input stream and store them in a RAM.
Once the coefficients have been read into the RAM, start processing the input data stream using these
coefficients as before. Use a separate input stream for the coefficients.

W It is important to control the input and output streams to ensure only correct data is read from
the input streams and written to the output stream correctly.
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Listing 36: A memory used to reverse the data in an input stream (DualPortRamKernel.maxj).
10 package dualportram;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Count.Counter;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Count.Params;
16 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.memory.Memory;
17 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
18 import com.maxeler.maxcompiler.v2.utils.MathUtils;
19
20 class DualPortRamKernel extends Kernel {
21 DualPortRamKernel(KernelParameters parameters) {
22 super(parameters);
23
24 int DATA SIZE = 16;
25
26 /∗Create a counter to generate the addresses to the RAM. This counts to twice the size of
27 ∗ the data set stored in the RAM. ∗/
28 int addrBits = MathUtils.bitsToAddress(DATA SIZE);
29 Params addressCounterParams = control.count.makeParams(addrBits+1);
30 Counter addressCounter = control.count.makeCounter(addressCounterParams);
31
32 /∗ Dropping the most significant bit from the counter gives us an incrementing address to
33 ∗ each element in the RAM to write the input data. Reversing this address gives us a
34 ∗ decrementing address to each element to read the data from the RAM in reverse order. ∗/
35 DFEVar inputAddress = addressCounter.getCount();
36 DFEVar outputAddress = DATA SIZE - 1 - addressCounter.getCount();
37
38 inputAddress = inputAddress.cast(dfeUInt(addrBits));
39 outputAddress = outputAddress.cast(dfeUInt(addrBits));
40
41 // If the counter is less that the size of the RAM, then we are reading input data
42 DFEVar readingInput = addressCounter.getCount() < DATA SIZE;
43
44 // Read input data during the first half of the counter
45 DFEVar inputData = io.input(”inputData”, dfeFloat(8,24) , readingInput);
46
47 /∗ The input port takes the input address and data input stream. The write-enable is set
48 ∗ to readingInput, which is true for the first half of the counter. ∗/
49 // The output port takes the decrementing output address
50 Memory<DFEVar> reverseRam = mem.alloc(dfeFloat(8,24), DATA SIZE);
51 reverseRam.write(inputAddress, inputData, readingInput);
52 DFEVar outputData = reverseRam.read(outputAddress);
53 /∗ When the counter is in its second half, the contents of the RAM will be read out in
54 ∗ reverse order. ∗/
55 io .output(”outputData”, outputData, dfeFloat(8,24) , ˜readingInput);
56 }
57 }
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Listing 37: A memory used as a ROM, initialized with doubles (RomKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 12 Example: 2 Name: Rom Kernel
4 ∗ MaxFile name: Rom
5 ∗ Summary:
6 ∗ Kernel design that demonstrates the use of a single port ROM.
7 ∗/
8
9 package rom;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.memory.Memory;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15
16 class RomKernel extends Kernel {
17 RomKernel(KernelParameters parameters) {
18 super(parameters);
19
20 final int addrBits = 8;
21 final int dataSize = ( int )Math.pow(2, addrBits);
22
23 // Input
24 DFEVar address = io.input(”address”, dfeUInt(addrBits));
25
26 double contents[] = new double[dataSize];
27 for ( int i = 0; i < dataSize; i++)
28 contents[ i ] = Math.sin(((Math.PI/2.0)/dataSize)∗i) ;
29
30 Memory<DFEVar> table = mem.alloc(dfeFloat(8,24), dataSize);
31 table .setContents(contents);
32
33 DFEVar result = table.read( address );
34
35 // Output
36 io .output(”output” , result , dfeFloat(8, 24));
37 }
38 }
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Listing 38: A mapped memory used as ROM, with two simultaneous reads (DualPortMappedRomKer-
nel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 12 Example: 3 Name: Dualport mapped ROM
4 ∗ MaxFile name: DualPortMappedRom
5 ∗ Summary:
6 ∗ Kernel design that demonstrates the use of a dual port mapped ROM.
7 ∗/
8
9 package dualportmappedrom;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.memory.Memory;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15 import com.maxeler.maxcompiler.v2.utils.MathUtils;
16
17 class DualPortMappedRomKernel extends Kernel {
18 DualPortMappedRomKernel(KernelParameters parameters, int dataSize) {
19 super(parameters);
20
21 int addrBits = MathUtils.bitsToAddress(dataSize);
22
23 // Input
24 DFEVar addressA = io.input(”addressA”, dfeUInt(addrBits));
25 DFEVar addressB = io.input(”addressB”, dfeUInt(addrBits));
26
27 Memory<DFEVar> mappedRom = mem.alloc(dfeFloat(8,24), dataSize);
28 mappedRom.mapToCPU(”mappedRom”);
29
30 // Output
31 DFEVar readA = mappedRom.read(addressA);
32 DFEVar readB = mappedRom.read(addressB);
33
34 io .output(”outputA”, readA, dfeFloat(8,24)) ;
35 io .output(”outputB”, readB, dfeFloat(8,24)) ;
36 }
37 }
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Listing 39: Main function for CPU code demonstrating setting of a mapped ROM (DualPortMappe-
dRomCpuCode.c).

61 int main()
62 {
63 const int size = 256;
64 int sizeBytesFloat = size ∗ sizeof(float ) ;
65 int sizeBytesDouble = size ∗ sizeof(double);
66 int sizeBytesInt = size ∗ sizeof( uint8 t ) ;
67 uint8 t ∗inAddressA = malloc(sizeBytesInt);
68 uint8 t ∗inAddressB = malloc(sizeBytesInt);
69 double ∗romContents = malloc(sizeBytesDouble);
70 double ∗romContentsReversed = malloc(sizeBytesDouble);
71 float ∗outDataA = malloc(sizeBytesFloat);
72 float ∗outDataB = malloc(sizeBytesFloat);
73
74 generateInputData(
75 size,
76 inAddressA, inAddressB,
77 romContents, romContentsReversed);
78
79 printf ( ”Running DFE.\n”);
80 DualPortMappedRom(
81 size,
82 inAddressA, inAddressB,
83 outDataA, outDataB,
84 romContents);
85
86 int status = check(
87 size,
88 outDataA, outDataB,
89 romContents, romContentsReversed);
90
91 if (status)
92 printf ( ”Test failed .\n”) ;
93 else
94 printf ( ”Test passed OK!\n”);
95
96 return status;
97 }
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13
Talking to CPUs, Large Memory (LMem),
and other DFEs

A Dataflow Engine needs to communicate with its LMem (Large Memory, GBs of off-chip memory),
CPUs and other DFEs. The Manager in a dataflow program describes the choreography of data move-
ment between DFEs, connecting CPUs, and also the GBs of data in LMem.

Figure 40 illustrates the architecture of a Maxeler acceleration system which comprises dataflow
engines (DFEs) attached directly to local memories and to a CPU. In a Maxeler solution, there may be
multiple dataflow engines connected together via high-bandwidth MaxRing interconnect. A dataflow
engine is made up of one or more Kernels and a Manager. Within a Kernel, streams provide a pre-
dictable environment for the designer to concentrate on data flow and arithmetic. Managers provide a
predictable input and output streams interface to the Kernel.

MaxCompiler provides pre-configured Managers, including the Standard Manager, and the Man-
ager Compiler for creating complex Managers of your own.

The Manager Compiler allows you to create complex Manager designs, with multiple Kernels and
complex interaction between Kernels and with IO resources. The Manager Compiler Tutorial docu-
ment, also provided with MaxCompiler, covers the Manager Compiler in detail.
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Figure 40: Overview of a Maxeler acceleration system

13.1 The Standard Manager

The Standard Manager provided with MaxCompiler is a general-purpose Manager which supports:

• a single Kernel

• external LMem interfaces

• linking between multiple dataflow engines

• links to the CPU

Figure 41 shows a two-DFE Maxeler acceleration system that can be targeted with the Standard
Manager.

All the Manager classes in the examples and exercises so far have used the Standard Manager
with all inputs and outputs directly connected to the CPU.

The Standard Manager is constructed with an EngineParameters object:

Manager(EngineParameters configuration)

The EngineParameters object contains information passed by MaxIDE; you can also add extra
parameters to this object.

By default, a clock frequency of 75 MHz is used. You can also set a different clock rate:

public void setClockFrequency(int clock frequency)

The default can be accessed explicitly using DEFAULT CLOCK FREQUENCY.
A Standard Manager can encapsulate a single Kernel, which is set using this setKernel:

void setKernel(Kernel k)

The version of makeKernelParameters in the Standard Manager class does not take a string for
the name of the Kernel as only one Kernel is allowed in the Standard Manager:
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Figure 41: Two-chip acceleration system using the Standard Manager

public KernelParameters makeKernelParameters()

setIO allows you to link the input and output streams in the Kernel to I/O resources enabled by the
Manager:

void setIO(Manager.IOType io type)
void setIO(IOLink ... links )

The first version of the function allows all inputs and outputs to be set together. All the links have
been to the CPU in the examples so far, for example:

Manager m = new Manager(new EngineParameters(args));
m.setIO(IOType.ALL CPU);

Figure 42 illustrates how a Manager, Kernel and CPU interact with one input and one output both
set to CPU.

Another option for setting all of the I/Os together is NOIO:

Manager m = new Manager(new EngineParameters(args));
m.setIO(IOType.NOIO);

This builds the Kernel as a block of logic with no connections to the outside world. This is useful
for determining the performance of a Kernel in isolation from the rest of the logic and optimization. A
BuildConfig object (see subsubsection 13.4.1) with the build level set to FULL BUILD cannot be used
in this mode.

The link for each input and output stream in the Kernel can be specified individually using a list of
IOLinks. An IOLink is declared using a stream name and the corresponding link type:

IOLink link (String io name, IOLink.IODestination iotype)
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iotype can be one of:

• CPU connects the stream to the CPU

• MAXRING A or MAXRING B connects the stream to one of two, bi-directional MaxRing links on a
MAX3

• LMEM LINEAR 1D connects the stream to LMem with a linear address generator

• LMEM BLOCKED 3D connects the stream to LMem with a 3D address generator

13.2 MaxRing communication

The MaxRing interconnect allows data to be transferred at high speed directly between dataflow en-
gines. Each dataflow engine in the system has a direct bidirectional connection to up to two other
DFEs, as shown in Figure 40.

There are two MaxRing connections on a MAX3: MAXRING A and MAXRING B.
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Listing 40: Inter-chip loopback Kernel (MaxringKernel.maxj).
1 /∗∗
2 ∗ Document: MaxCompiler Tutorial (maxcompiler-tutorial.pdf)
3 ∗ Chapter: 13 Example: 1 Name: Maxring
4 ∗ MaxFile name: Maxring
5 ∗ Summary:
6 ∗ Kernel design that takes a scalar input to select whether
7 ∗ it should behave as the left or right DFE.
8 ∗/
9

10 package maxring;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15
16 class MaxringKernel extends Kernel {
17
18 MaxringKernel(KernelParameters parameters) {
19 super(parameters);
20
21 DFEVar isLeft = io.scalarInput( ” isLeft ” , dfeBool()) ;
22
23 DFEVar inA = io.input(”inA”, dfeUInt(32), isLeft ) ;
24 DFEVar inB = io.input(”inB”, dfeUInt(32), ˜ isLeft ) ;
25
26 io .output(”outA”, inA, dfeUInt(32), isLeft ) ;
27 io .output(”outB”, inB, dfeUInt(32), ˜ isLeft ) ;
28 }
29 }

13.2.1 Example with loop-back across two chips

Example 1 shows a simple application that reads a stream of data from the CPU into one dataflow
engine, passes the data over a MaxRing link to the second DFE and then writes the data back from the
second DFE to the CPU. Listing 40 shows the source code for the Kernel.

As both dataflow engines are identically configured, the Kernel takes a scalar input to select whether
it should behave as the left or right DFE in Figure 43:

21 DFEVar isLeft = io.scalarInput( ” isLeft ” , dfeBool()) ;

The inputs and outputs are controlled by isLeft to either read from inA and write to outA, or read
from inB and write to outB:

23 DFEVar inA = io.input(”inA”, dfeUInt(32), isLeft ) ;
24 DFEVar inB = io.input(”inB”, dfeUInt(32), ˜ isLeft ) ;
25
26 io .output(”outA”, inA, dfeUInt(32), isLeft ) ;
27 io .output(”outB”, inB, dfeUInt(32), ˜ isLeft ) ;

Figure 44 shows the resultant Kernel graph for the example.
The Manager connects the inputs and outputs to the CPU and MaxRing links:

30 m.setIO(link( ”inA”, CPU), link( ”inB”, MAXRING A),
31 link ( ”outA”, MAXRING A), link(”outB”, CPU));
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Figure 43: MaxRing links on a Standard Manager

13.3 Large Memory (LMem)

The Standard Manager allows you to connect any number of streams to the LMem on the dataflow
engine. This allows large amounts of data to be kept local to the dataflow engine and iterated over. The
LMem appears as one contiguous piece of memory. There are different access patterns available for
the memory:

• LMEM LINEAR 1D connects the stream to LMem with a simple linear address generator.

• LMEM BLOCKED 3D connects the stream to LMem with a 3D address generator.

The Manager Tutorial covers more advanced LMEM LINEAR 1D and LMEM BLOCKED 3D usage, as
well as other memory access patterns such as LMEM STRIDED 2D.

In the Standard Manager, each stream has its own address generator. The parameters for the
behavior of the memory address generators for each stream can be set up either in the CPU code or in
a SLiC engine interface to simplify the CPU interface to the DFE.

The Standard Manager provides a CPU input stream called "write lmem" and an output stream
to the CPU called "read lmem" for accessing the LMem linearly in the CPU software. MaxCompiler
automatically creates two SLiC engine interfaces, <.max file name> writeLMem and <.max file

name> readLMem, to write to and read from the LMem from the CPU using these streams.
The memory controller and its address generators work in bursts. The burst length can be retrieved

in CPU code through SLiC:

int max get burst size(
max file t ∗ const maxfile,
const char ∗ const name);
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Figure 44: Kernel for the simple MaxRing loopback

The burst length is also available in the Manager through the getBurstLength method.

W All dimensions provided as arguments to address generator functions are in bytes and must be
a multiple of the burst length.

13.3.1 Linear address generators

A linear address generator is set up using two arguments address and size to address a block of
LMem, for example in a SLiC engine interface:

public void setLMemLinear(String streamName,
InterfaceParam address,
InterfaceParam size)

setLMemLinear reads size bytes from address, then returns to address to start reading again.

13.3.2 3D blocking address generators

A 3D Blocking address generator operates in a coordinate system where the unit of size in each di-
mension is in bytes. A block of size (rwSizeFast, rwSizeMed, rwSizeSlow), with its origin at (offset-
Fast,offsetMed,offsetSlow) is read from a larger block of size (arraySizeFast, arraySizeMed, arraySizeS-
low):

public void setLMemBlocked(String streamName,
long address,
long arraySizeFast,
long arraySizeMed,
long arraySizeSlow,
long rwSizeFast,
long rwSizeMed,
long rwSizeSlow,
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long offsetFast,
long offsetMed,
long offsetSlow)

The terms fast, medium and slow refer to the speed of indexing the LMem in that dimension: the
most efficient access to the LMem indexes in the fast dimension first, then the medium, then the slow.

Figure 45 shows the meaning of the arguments in 3D space.

13.3.3 Large Memory (LMem) example

This example shows a Kernel with two inputs connected to LMem and an output to LMem. There are
no inputs or outputs to the CPU from the Kernel.

In this example, the two input streams are read from different locations in memory, added together
and written back to a third location. The input data is written directly from the CPU code via the
"write lmem"stream before the Kernel runs and the output data is read back via the "read lmem"

stream once the Kernel has completed. Figure 46 shows the interaction of the Kernel, Manager and
CPU code.

The body of the Kernel simply connects the output stream to the sum of the two input streams:

20 DFEVar inA = io.input(”inA”, dfeUInt(32)) ;
21 DFEVar inB = io.input(”inB”, dfeUInt(32)) ;
22
23 io .output(”oData”, inA+inB, dfeUInt(32)) ;
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The Manager attaches the three streams to linear memory address generators:

32 m.setIO(link( ”inA”, IODestination.LMEM LINEAR 1D),
33 link ( ”inB”, IODestination.LMEM LINEAR 1D),
34 link ( ”oData”, IODestination.LMEM LINEAR 1D));

The CPU code first creates two buffers of data:

33 int32 t ∗inA = malloc(sizeBytes);
34 int32 t ∗inB = malloc(sizeBytes);
35
36 for ( int i = 0; i < size; i++) {
37 inA[ i ] = i ;
38 inB[ i ] = size − i ;
39 }

The two buffers are written to two separate locations in the LMem:

42 LMemLoopback writeLMem(0, sizeBytes, inA);
43 LMemLoopback writeLMem(sizeBytes, sizeBytes, inB);

To run the Kernel, the default SLiC engine interface can be run:

45 printf ( ”Running DFE.\n”);
46 LMemLoopback(size);

The SLiC function returns once the Kernel has completed writing its output to the LMem. Now the
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contents of the LMem at the output stream location can be read back to the CPU:

49 int32 t ∗outData = malloc(sizeBytes);
50 LMemLoopback readLMem(2 ∗ sizeBytes, sizeBytes, outData);

13.4 Building DFE configurations

All Managers extend the maxcompiler.v1.managers.DFEManager class which provides several meth-
ods. Specific Managers have additional methods.

abstract void build()

build launches the build process. It can be called only once.

void logMsg(String msg, Object... args)
void logWarning(String msg, Object... args)

logMsg and logWarning allow you to log messages that are output in the build.log file in the
build directory. This is preferable to printing directly to the console as these messages are saved for
reference. Messages are formatted using a printf-like format.

makeKernelParameters is required for constructing a Kernel and supplies the name:

KernelParameters makeKernelParameters(String kernel name)

BuildConfig objects are useful for controlling the configuration of the build process:

BuildConfig getBuildConfig()
void setBuildConfig(BuildConfig build config )

13.4.1 BuildConfig objects

A BuildConfig object can be used to set and retrieve build settings. Methods available include
setBuildEffort:

void setBuildEffort (BuildConfig. Effort effort )

Build effort tells the third party tools how much effort to put into trying to find an implementation of the
circuit to meet the design requirements (clock speed and area). The options available are HIGH, LOW,
MEDIUM, VERY HIGH. Though it may be tempting to always run with high effort levels, builds can take a
long time when constraints are tight, so lower effort levels are useful for iterative test and optimization.

void setBuildLevel(BuildConfig.Level level )

Build level tells MaxCompiler up to which stage to run the build process. By default, MaxCompiler
runs the complete build process and produces a .max file. Options available are:

• FULL BUILD (default) runs the complete process

• COMPILE ONLY stops after producing the VHDL output from MaxCompiler

• SYNTHESIS compiles the VHDL output

• MAP maps the synthesized design to components in the silicon device

• PAR places and routes the design for the chip, producing a DFE configuration
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Levels other than FULL BUILD are typically only useful when debugging a build-related problem.
Multi-pass Place and Route (MPPR) is the term used for automatically running the place and route

process on the same input design multiple times with different starting conditions in order to see which
run gives the best results. setMPPRCostTableSearchRange instructs the silicon vendor’s map and
place and route tools to use a range of “cost tables” to initialize a multi-pass run:

void setMPPRCostTableSearchRange(int min, int max)

MaxCompiler can produce a timing report based on the output of the place and route tools. This
can be used to identify timing issues which may help when optimizing the design. Timing reports are
enabled by default but can be enabled and disabled explicitly:

void setEnableTimingAnalysis(boolean v)

Exercises
Exercise 1: LMem and MaxRing loop-back

Using the two examples in this section for help, write an application using two devices where:

1. The first device reads data from CPU and passes it to the other via an inter-chip link.

2. The second device reads data from the MaxRing link and writes it to LMem.

3. The CPU code reads the data from LMem and checks it against the input.

Figure 47 shows the required flow of data through the system.
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A
Java References

For further information on the Java language we recommend the following resources:

• http://docs.oracle.com/javase/tutorial/java/index.html

An overview of Java and an introduction to its major syntactical features.

• http://docs.oracle.com/javase/tutorial/collections/index.html

An overview of the Java “Collections” API which is used often in MaxCompiler interfaces.

• http://docs.oracle.com/javase/6/docs/api/

API documentation for the standard Java libraries.

• http://www.java-tips.org/java-se-tips/java.lang/using-the-varargs-language-

feature.html

Introduction to using variable-argument methods in Java which are also common in MaxCompiler
interfaces.
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B
On Multiscale Dataflow Research

– Oskar Mencer and Maxeler Advisors, December 2012

Once upon a time: http://www.cs.berkeley.edu/~kubitron/asplos98/abstracts/oscar_
mencer.ps

Today, Multiscale Dataflow combines static dataflow computing on Dataflow Engines (DFEs) with
optimization on multiple levels of abstraction and scale: from mathematics and algorithms all the way to
arithmetic and logic gates. Such vertical optimization is needed for mission-critical computations where
every second counts. Being part of MAX-UP opens up a wide range of opportunities to investigate the-
ory and practice of computing at the physical limits of a given generation of technology. This document
is intended for the seasoned MAX-UP researcher, writing papers based on MPC systems and looking
for interdisciplinary research and new funding opportunities to advance multiscale dataflow computing.
For Maxeler publications see: http://www.maxeler.com/publications/
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1 Multiscale Dataflow Computing

1 Multiscale Dataflow Computing

Multiscale Dataflow Computing addresses the requirements of very large datasets and computationally
intensive problems on these datasets. We get a lot of requests to clarify which applications dataflow
computing is most suitable for and how an FPGA chip compares to some multi-core chip running a
small loop-nest with a small dataset. However, instead of comparing chips, or suitability of algorithms,
the key to meaningful investigation is to ask which problem sizes best balance the dataflow computation
given a full system configuration, including multiple nodes with storage, networking and compute units.
The hard part for researchers is to get a meaningfully large dataset. In the example referenced below,
we show 3D finite difference running on a Maxeler 1U compute node with 4-8 dataflow engines (DFEs),
and find that speedup with MPC systems grows with problem size, especially for large problems beyond
a mesh with 10003 points.

[FD modeling beyond 70Hz with FPGA acceleration. D. Oriato, O. Pell (Maxeler), C. Andreoletti
and N. Bienati (ENI). Society of Exploration Geophysicists 2010, Denver, USA, Oct. 2010]

2 Algorithm Transformation

So what else could one do to publish (not perish)? There are many opportunities to explore algorithm
transformations. A question rich in research potential is: How could this algorithm be transformed to
run optimally on the particular system configuration. In essence, a multiscale dataflow machine brings
with it a vast space for developing novel versions of many existing algorithms. Even algorithms that
so far have not been popular are getting a new chance to shine. Following common folklore, one can
always trade off FFTs with convolutions in the time domain. And dataflow machines really excel at the
convolution, but there are a few notable exceptions depending on the size of the FFT and the amount
of computation involved. Back to our example with 3D finite difference, there is flexibility in designing
stencils of different shapes (locations of coefficients for the convolution). A significant project at Stanford
showed how a cube stencil brings a 5x advantage over the star stencil, even though the star stencil is
optimal on a CPU.

[Accelerating 3D Convolution using Streaming Architectures on FPGAs. H. Fu, R. G. Clapp,
O. Mencer and O. Pell. (Stanford University, Imperial College London, Maxeler Technologies), 79th
Society of Exploration Geophysicists (SEG), Houston, October 2009.]

3 From Bits to Numbers

Of course all this is only the tip of the iceberg. Considering the representation of data (how do you
use zeros and ones to describe all the other numbers), it may well be possible to invent new ways
to design the data structures and arrange the layout and access of numbers in memory. By finding
innovative ways to streamline dataflow memory accesses, DFE technology can really flex its muscle.
And data layout is just the beginning. The encoding of arrays of numbers can be investigated by
encoding each array differently: Are there ways to compress the data or expand the data in order to
achieve further acceleration? The famous examples here are gigantic sparse matrix computations in
the Finite Elements (FE) method, where the same shaped sparse matrix has to be read and written
over and over and over again. Imagine if one had a memory controller that specializes in reading and
writing this particular sparse matrix in compressed form.

[Surviving the End of Scaling of Traditional Microprocessors in HPC. O. Lindtjrn, R. G. Clapp,
O. Pell, O. Mencer and M. J. Flynn. (Schlumberger,Stanford University,Maxeler Technologies) IEEE
HOT CHIPS 22, Stanford, USA, August 2010.]
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4 Memory o’Memory

Making computation happen quicker is all about joint layout of data and compute modules. The research
challenge starts when the data structures do not support controlling memory accesses, making memory
access “random”. But memory controllers cannot help with random memory access, or can they? For
irregular memory access issues such as applications with graph data structures, a top research ques-
tion is: How can we expand the data by, for example, looking at the adjacency matrix representation
or a sorted array representation of nodes and put all that together with metadata about location in the
graph. We could do all that without pointer-based linked-nodes which create all the “random” memory
accesses. Since a dataflow machine is all about data and memory, using more memory (redundancy)
to regularize (or regularise) memory access is a counter intuitive transformation with significant poten-
tial. All such new memory layouts offer wide design spaces with wide opportunities for advancing our
understanding of algorithms and computation in general.

[Accelerating Unstructured Mesh Computations using Custom Streaming Architectures. Kyrylo
Tkachov, Supervisor: Prof. Paul H J Kelly (Imperial College London)]

5 Adapting Models to Dataflow

Let us also consider the reason to compute in the first place. Looking at the objective of the computation
rather than a particular implementation, how can we attack a much more ambitious objective given the
capabilities of the dataflow systems? Is it possible to add more “Physics”, a more compute-intensive
approximation method, or try to achieve a leap in capability? Just assuming that our 3D finite difference
is solving an acoustic wave equation clearly limits the potential research of solving the underlying partial
differential equation. Looking at the overarching objective of creating 3D images of the earth, scientists
contemplate the use of the elastic wave equation which models the world a lot more accurately, or
even add viscosity to arrive at the visco-acoustic/elastic equations. It turns out that dataflow machines
become more and more attractive the more complexity becomes available, offering the possibility to
accelerate the development of next generation models and science in general. Writing a paper about
Physics models requires collaboration between scientists developing models and computer engineering
researchers. Such collaboration offers substantial gain but it is no small political challenge in any
(academic) environment. One of the goals of MAX-UP is to support and facilitate such interdisciplinary
collaboration.

[Beyond Traditional Microprocessors for Geoscience High-Performance Computing Applica-
tions. O. Lindtjrn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn and H. Fu. (Schlumberger, Stan-
ford,Maxeler,Tsinghua University), IEEE Micro, vol. 31, no. 2, March/April 2011.]

6 Numerics

The most discrete field in computational research lies in numerics. Contributing to the understanding
of interaction between number representation and convergence of algorithms, number of iterations
needed, and accuracy of inputs and final results, may not be an entirely un-useful endeavor, helping
scientists to better understand their problems but also making a statement about the appropriateness
and stability of their results. What does this really mean? On the simple end, it is possible to explore
various number representations such as variable bitwidths for floating point or fixed point (challenging
many proponents of the rigid IEEE floating point standards by using sub-single precision and super-
quad precision). To further shrink the representation, we have block floating point with one exponent for
a block of mantissa values, logarithmic numbers, all the way to mixed approaches minimizing bitwidth
combined with statistical methods, such as in for example:
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[A Mixed Precision Monte Carlo Methodology for Reconfigurable Accelerator Systems. Chow,
Tse, Jin, Luk, Thomas, Leong, (Imperial, Sydney), FPGA 2012]

7 Arithmetic

Tightly coupled with representation we have arithmetic, and in that case, the space for research ex-
ploration contains yet many more alternatives and options. If we add elementary function evaluations,
we can ask the question which precision and range is needed for input and output respectively, and
given a function, there is some optimal architecture that provides the desired result while minimizing
latency, area or arithmetic units. Of course, the same brute force design space exploration also applies
to higher-level functions and whole implementations of algorithms.

[Optimizing Hardware Function Evaluation Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer, Wayne
Luk (Imperial College) IEEE Transactions on Computers. vol. 54, no. 12, pp. 1520-1531. Dec, 2005.]

8 Precision and convergence

For some datasets there are issues of convergence of results when iterating millions of times in a
numerical solver, which occasionally arise in some number representations and certain meshing strate-
gies and not in others. On the other hand, some convergence issues might only arise after thousands of
iterations, which may take too long on conventional computers but can be reached on an MPC system.
Investigating convergence goes hand-in-hand with minimizing precision and optimizing rounding. The
third dimension is discretization in time and space: length of time-steps of simulations and the shape of
the grid that we are computing the simulation on. The opportunity here is to study the interaction and
correlations between precision, discretization in time and space, and convergence of the algorithm. In
particular, there is scope to study application specific precision and rounding methods (in space, time
and value) based on domain specific criteria for the quality of results, to maximize dataflow computa-
tion and provide further levers to better understand the implications of computing digitally in an analog
world.

[Stanford Seminar EE380: Flexible Number Representations for Computing with FPGAs
http://www.stanford.edu/class/ee380/ay0304.html, April 2004.]

9 Domain Specific Languages

Programming DFEs is intellectually stimulating. But how about making it even more exciting by adding
Domain Specific Languages (in the spirit of our Finite Difference Compiler)? Or investigating direct
dataflow compilation from MATLAB or OpenCL or even Excel? Or translating and mapping established
open source software to a hyperfast platform? Of course, the ultimate challenge is to devise an au-
tomatic or semi-automatic translation of sequential programs to dataflow, or even translation dynamic
object files of applications as they are running.

[Building Deep, Hazard-free Hardware Pipelines from OpenCL Programs Stanislaw Czerni-
awski, MEng Thesis, Department of Computing Imperial College London (Supervised by Paul H J Kelly
and Wayne Luk).]

10 Comparisons

Finally, if there is no way to avoid comparing technologies, we believe that the fair approach is to fix
the size of the machine (lets say to 1U), for example a 1U MPC-X dataflow appliance, and compare
performance and power consumption to a 1U machine from other vendors. Of course, the problem size
needs to be significant enough to justify dataflow computing. Alternatively, one can look at larger scale
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systems with multiple nodes and normalize to the 1U space unit. Furthermore, one can normalize to
power consumption, and compare large problem performance per Watt, as long as the power mea-
surement is done at the power socket and not based on some artificial measure of power consumption
inside the chip. Finally, another perspective can be obtained by looking at what performance $1M can
buy, and then compare the performance and electricity and real-estate costs of the resulting machines
over a typical 3 year lifetime. Buying multi-core processors for $1M could bring another $1M in electric-
ity costs, while buying a dataflow machine for $1M reduces electricity costs to under $100K AND the
dataflow machine is faster. How can that be?
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SLiC API Index

max actions free, 118
max actions init, 117
max actions t, 117, 118

max disable validation, 120

max errors check, 130
max errors mode, 130
max errors t, 129
max errors trace, 130

max get mem double, 119
max get mem uint64t, 119
max get offset auto loop size, 119
max get stream distance, 119

max ignore block, 120
max ignore kernel, 120
max ignore mem, 120
max ignore mem input, 120
max ignore mem output, 120
max ignore offset, 120
max ignore route, 120

max load, 112, 113
max load array, 114
max load group, 115

max lock any, 116

max get burst size, 154
max watch range, 55
MAXOS EXCLUSIVE, 115–117
MAXOS SHARED, 115–117
MAXOS SHARED DYNAMIC, 115–117

max nowait, 128, 129

max ok, 130

max queue input, 118
max queue output, 118

max run array, 120
max run array nonblock, 128
max run group, 120
max run group nonblock, 128
max run nonblock, 128
max run t, 128

max set mem double, 119
max set mem uint64t, 119
max set offset, 119
max set param array double, 118
max set param array uint64t, 118
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max set param double, 117
max set param uint64t, 117
max set ticks, 119

max unload array, 114
max unload group, 116
max unlock, 116

max wait, 128
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MaxJ API Index

!, 81
!=, 80
!==, 80
*, 80
*=, 80
+, 80
++, 81
+=, 80
-, 80
--, 81
/, 80
<, 29, 80
<<, 80
<=, 80
<==, 80
=, 80
==, 80
===, 80
>, 29, 80
>=, 80
>>, 80
>>=, 80
>>>, 80
?:, 28, 80, 81, 93
[], 80, 127

%, 81
&, 29, 80, 81
&&, 81
*=, 80
+=, 80
>>=, 80
^, 80
~, 80
|, 80, 81
||, 81

addConstant, 126
addMaxFileConstant, 127
addMaxFileDoubleConstant, 127
addMaxFileStringConstant, 127
addParam, 124
addParamArray, 127
alloc, 140

Bits, 141
build, 158
build(), 42
BuildConfig, 151, 158
BuildConfig.Effort, 158
BuildConfig.Level, 158

cast, 74
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COMPILE ONLY, 158
control.count, 101
control.count.makeCounterChain, 103
control.count.simpleCounter, 29, 84
control.mux, 28, 93
count.makeCounter, 106
count.makeParams, 105
Count.Params, 105, 106
COUNT LT MAX THEN WRAP, 105
Counter, 106
CounterChain, 103, 104
CPU, 152
CPUTypes, 124
createSLiCinterface, 121

DEFAULT CLOCK FREQUENCY, 150
dfeBool, 73, 80
DFEComplex, 75, 78
DFEComplexType, 72, 75, 78, 80
DFEFix, 74, 75, 80
dfeFixOffset, 72
DFEFloat, 71, 72, 75, 80
dfeFloat, 72, 75
DFEInt, 71, 80
dfeInt, 73
dfePrintf, 57
DFERawBits, 73, 80
dfeRawBits, 73
DFEStructType, 75, 80
DFEType, 72, 75
DFEUInt, 80, 104
dfeUInt, 73, 74
DFEUntypedConst, 74
DFEVar, 39, 53, 54, 71, 72, 74, 75, 78, 93
DFEVar.getType, 72
DFEVar.slice, 73
DFEVector, 78
DFEVectorType, 75, 78–80
Direction, 123
Direction.IN, 123
Direction.OUT, 123

EngineInterface, 121
EngineParameters, 42, 150

FULL BUILD, 151, 158, 159

getAutoLoopOffset, 126
getBurstLength, 155

getCount, 106
getDistanceMeasurement, 126
getWrap, 106

ignore, 123
ignoreAll, 122, 124
ignoreAutoLoopOffset, 127
ignoreDistanceMeasurement, 127
ignoreKernel, 124
ignoreLMem, 123
ignoreMem, 123, 125
ignoreOffset, 123
ignoreRoute, 123
ignoreScalar, 123, 125
ignoreStream, 123
InterfaceParam, 126, 127
io.input, 40, 133
io.output, 41, 134
io.scalarInput, 83
IOLink, 151

Kernel, 39, 40, 72
KernelParameters, 39, 40

link, 151
LMEM BLOCKED 3D, 152, 154
LMEM LINEAR 1D, 152, 154
LMEM STRIDED 2D, 154
logMsg, 158
logWarning, 158

main, 42
makeKernelParameters, 150, 158
Manager, 41, 42, 121, 127, 150
MAP, 158
MathUtils.bitsToAddress, 141
maxcompiler.v1.managers.DFEManager, 158
MAXRING A, 152
MAXRING B, 152
Memory, 140
MODULO MAX OF COUNT, 105

NOIO, 151
NUMERIC INCREMENTING, 104, 105

OffsetExpr, 91

PAR, 158
printf, 158
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RamWriteMode, 143
READ FIRST, 143
read lmem, 154, 156
Reductions.streamHold, 95

setBuildConfig, 158
setBuildEffort, 158
setClockFrequency, 150
setEnableTimingAnalysis, 159
setIO, 42, 151
setKernel, 150
setLMemBlocked, 126, 156
setLMemInterruptOn, 126
setLMemLinear, 126, 155
setLMemLinearWrapped, 126
setLMemStrided, 126
setMem, 125
setMPPRCostTableSearchRange, 159
setOffset, 125
setScalar, 125
setStream, 125
setTicks, 125
SHIFT LEFT, 104
SHIFT RIGHT, 105
SignMode.TWOSCOMPLEMENT, 72
SignMode.UNSIGNED, 72
simpleCounter, 101, 102, 104
simPrintf, 57, 58
simWatch, 54
slice(i), 80
STOP AT MAX, 105, 136
stream.makeOffsetParam, 90
stream.offset, 87, 93
super, 40
suppressDefaultInterface, 121
SYNTHESIS, 158

unignoreAutoLoopOffset, 124
unignoreDistanceMeasurement, 124
unignoreMem, 124
unignoreScalar, 124

with, 106
withInc, 106
withMax, 106
WRITE FIRST, 143
write lmem, 154, 156
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<==, connect operator, 79
===, Stream equality, 80
==, Java reference equality, 80
?:, ternary-if, 28
3D offsets, 92

actions, 113
queuing, 128
validation, 119, 120

Advanced Dynamic, see SLiC Interface, Advanced
Dynamic

Advanced Static, see SLiC Interface, Advanced Static
arrays, DFEs, see engines, multiple, see engines,

multiple
arrays, engine interface parameters, see engine

interface, arrays
asynchronous execution, 128
autoloop offsets, 126

Basic Static, see SLiC Interface, Basic Static
bits, 74
Booleans, 73
build configuration, 158
build directory, 47
build effort, 158
build level, 158
build log, 42

writing to, 158

building DFE configurations, 158
burst size, 154

casting, 74
clock frequency, 150
command line

run rules, 38
simulation, 38

compilation, 31
complex numbers, 75
composite types, 75
conditions, 28

multiplexer, 28
ternary-if, 28

connect operator, 79
constants, 74
control flow, 2
controlled inputs, outputs, 133
counter chains, 103
counters, 101

advanced, 104
chained counters, 103
conditional, 105
controlling inputs, outputs, 135
modes, 104
simple, 101
wrap behavior, 105
wrap signal, 105
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CPU types, 124

dataflow, 2
dataflow core, 2
dataflow engines (DFEs), 3
debugging, 60

MaxDebug, see MaxDebug
printf, 57, see printf

watches, see watches
default engine interface, 121
DFE configuration, see .max file
DFEVar, 71, 72
directories

build, 47
debug output, 131, 132
examples, 38
exercises, 38
resource annotation, 47
run rules, 38

distance measurements, 126
double-precision, 72
DSP, 47
dynamic offsets, 93

Eclipse, see MaxIDE
engine handle, 113
engine ID

arrays/groups of engines, 114
single engine, 112

engine interface
arrays, 127
default, overriding, 121
engine interface parameters, 124
ignoring Kernels, 124
ignoring parameters, 122, 123
LMEM, setting, 126

engine interface parameters, see engine interface,
engine interface parameters

engine interfaces
adding, 121
engine interface parameters, 117

engine parameters, 42, 150
engine sharing modes, 115
engine state, 113
engines

groups, 115, 120
multiple, 114, 120
sharing, 115, 120

equality, 80

error context, 129
error handling, 129
event logging

enabling, 131
ignoring errors, 131

examples
building, 33
importing, 34
source code, 38

execution status handle, 128
exercises

building, 33
importing, 34
source code, 38

fixed point, 74
fixed-point numbers, 72
flip-flop, 47
floating-point numbers, 72
FMem, 3, 139

mapped, 141
frequency, clock, 150

graphs, 22, 46
construction, 31
moving average, 23
node types, 23

group ID, 115
groups of engines, 115, 120

import wizard, see MaxIDE, import wizard
imports, 39
inputs

controlled, 133
scalar, 83
stream, 40

integers, 73
interface, engine, see engine interface
interface, SLiC, see SLiC Interface
IO types, 152

Java, 20, 72, 161

Kernel, 4
Kernel name, setting, 158
KernelParameters, 40
Kernels, 19, 22, 39

ignoring, 124
name, setting, 158
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LMem, 3, 154
1D linear, 154, 155
2D strided, 154
3D blocked, 154, 155
access from CPU, 154
access patterns, 154
burst size, 154

log files
build, 42

logMsg, 158
logWarning, 158
loops, 101
LUT, 47

make, 38
Manager, 4
Managers, 20, 31, 41, 149
MATLAB, 10
.max file constants, 127
.max files, 7, 19, 31

building, 158
constants, 127
initializing, 112
loading, 112
multiple .max files, 9, 114
time to load, 112

MaxDebug, 64
stream status blocks, 62

maxdebug, 60
MaxelerOS, 4, 117
MaxIDE, 33

building, 37
import wizard, 34
launching, 33
welcome screen, 35

MaxJ, 20, 72
MaxRing, 4, 115, 152
MAXSOURCEDIRS, 48
memory, 139

FMem, see FMem
LMem, see LMem
mapped, see FMem, mapped
off-chip, see LMem
on-chip, see FMem
RAMs, see RAMs
ROM, see ROMs
static, see FMem

moving average, 7, 23, 28

MPPR, 159
Multi-pass Place and Route, see MPPR
multiplexer, 28, 93
multiscale dataflow computing, 1

nested loops, 103
non-blocking execution, 128

off-chip memory, see LMem
offsets, 87

3D, 92
comparing, 94
dynamic, 93
expressions, 90
static, 89
variable, 89

operator overloading, 20, 72
operators, 80
outputs, 41

controlled, 134

performance, estimating, 25
printf, 57, 132

output directory, 131
standard output, 131

processes, 115
projects

building, 37
command line, 38

Python, 10, 11

R, 10, 13
RAM, off-chip, see LMEM
RAMs, 140

block, 47
dual port, 140
read/write mode, 143

raw bits, 74
resource annotation, 47

directory, 47
enabling, 48

ROMs, 141
mapped, 141
single port, 141

run rules, 35
building, 37
command line, 38

scalar inputs, 83
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sharing modes, 115
Simple Live CPU Interface, see SLiC Interface
simulation, 31

command line, 38
single-precision, 72
Skins, 10
SLiC Interface, 4, 7, 45

Advanced Dynamic, 18, 117
Advanced Static, 18, 112
asynchronous execution, 128
Basic Static, 8
configuration, 131
engine interfaces, see engine interfaces
error handling, 129
non-blocking execution, 128
skins, 10

sliccompile, 10
Standard Manager, 150

setIO, 151
stream hold, 95, 98
stream offset, see offsets
stream reference, see DFEVar

stream size, 45
stream status blocks, 62

ternary-if, 28
threads, 115
tick, 25
timeouts, 131
types, 71

bits, 74
Booleans, 73
casting, 74
complex numbers, 75
composite, 75
constants, 74
fixed point, 74
floating point, 72
hierarchy, 72
integers, 73
primitive, 72
unsigned integers, 73
vectors, 78

unsigned integers, 73

variable offsets, 89
variable, see DFEVar, 71
vectors, streams, 78

watches, 54
output directory, 131, 132
range, limiting, 55

welcome screen, see MaxIDE, welcome screen
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